首页 > 论文 > 中国激光 > 46卷 > 4期(pp:402008--1)

纳秒激光熔覆硅纳米薄膜的仿真分析及实验研究

Simulation Analysis and Experimental Study on Nanosecond Laser Cladding Silicon Nano Film

徐龙   洪捐   汪炜  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以重掺杂硼的纳米硅浆料为硼源, 采用纳秒激光熔覆工艺, 在钝化发射极及背接触(PERC)电池背面形成了重掺杂硼的硅熔覆层。通过建立三维瞬态温度场的有限元仿真模型, 并利用单因素仿真实验, 得到了激光工艺参数对温度场的影响规律, 初步确定了各激光工艺参数的合理范围。利用极差分析获得了激光工艺参数与激光熔覆温度场分布的相互作用规律。将激光熔覆工艺兼容到PERC电池的制备实验中, 结果表明:仿真模型与实验结果较为吻合, 电池的平均光电转化效率提升了0.27%。

Abstract

Nano-silicon slurry with heavily doped boron is used as the source of boron, and nanosecond laser cladding process is used to form a heavily doped boron silicon cladding layer on the back of passivated emitter rear contact (PERC) solar cells. The finite element simulation model of three-dimensional transient temperature field is established. Based on this model and single factor simulation experiments, the influence rules of laser process parameters on temperature field are obtained and reasonable range of laser process parameters is preliminarily determined. Through range analysis, the interaction law between laser processing parameters and temperature field distribution of laser cladding is obtained. Laser cladding process is compatible with PERC solar cells preparation experiment. The experimental results show that the simulation model is consistent with the experimental results, and the average photoelectric conversion efficiency of the solar cell is improved by 0.27%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0402008

所属栏目:激光制造

基金项目:国家自然科学基金面上项目(51475236)、国家自然科学基金青年基金(51805466)、中国博士后科学基金面上资助项目(2018M630553)

收稿日期:2018-10-23

修改稿日期:2019-01-16

网络出版日期:2019-01-18

作者单位    点击查看

徐龙:南京航空航天大学机电学院, 江苏 南京 210016
洪捐:南京航空航天大学机电学院, 江苏 南京 210016盐城工学院机械工程学院, 江苏 盐城 224051
汪炜:南京航空航天大学机电学院, 江苏 南京 210016

联系人作者:汪炜(wangwei@nuaa.edu.cn)

【1】Wang Y F, Xiao L J, Liu M X, et al. Research progress of laser cladding amorphous coatings[J]. Laser & Optoelectronics Progress, 2014, 51(7): 070002.
王彦芳, 肖丽君, 刘明星, 等. 激光熔覆制备非晶复合涂层的研究进展[J]. 激光与光电子学进展, 2014, 51(7): 070002.

【2】Zhai J H, Liu Z J, Zhang Y, et al. Laser cladding reparation of inner cylinder piston rods[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111411.
翟建华, 刘志杰, 张勇, 等. 内缸活塞杆的激光熔覆修复[J]. 激光与光电子学进展, 2017, 54(11): 111411.

【3】Zhang Y B, Bin R, Lang D M. Calculation for nano-second pulsed laser cladding temperature field and analysis of thin film removal mechanism[J]. Applied Laser, 2012, 32(6): 464-468.
张永彬, 宾韧, 郎定木. 纳秒脉冲激光熔覆温度场计算及薄膜飞溅机制分析[J]. 应用激光, 2012, 32(6): 464-468.

【4】Yu Y S, You L B, Liang X, et al. Progress of excimer lasers technology[J]. Chinese Journal of Lasers, 2010, 37(9): 2253-2270.
余吟山, 游利兵, 梁勖, 等. 准分子激光技术发展[J]. 中国激光, 2010, 37(9): 2253-2270.

【5】Kluska S, Granek F. High-efficiency silicon solar cells with boron local back surface fields formed by laser chemical processing[J]. Proceedings of the IEEE, 2011, 32(9): 1257-1259.

【6】Das A, Kim D S, Nakayashiki K, et al. Boron diffusion with boric acid for high efficiency silicon solar cells[J]. Journal of the Electrochemical Society, 2010, 157(6): H684-H687.

【7】Vinodkumar M, Korot K, Limbachiya C, et al. Screening-corrected electron impact total and ionization cross sections for boron trifluoride (BF3) and boron trichloride (BCl3)[J]. Journal of Physics B, 2008, 41(24): 245202.

【8】Su S C, Wang T, Han Y Z, et al. p+/n+ emitter of the crystalline silicon solar cell fabricated with solid diffusion source deposited by HWCVD method[J]. Journal of Synthetic Crystals, 2016, 45(11): 2591-2595.
宿世超, 王涛, 韩宇哲, 等. 热丝CVD法沉积固态扩散源制备晶硅太阳电池p+/n+发射极研究[J]. 人工晶体学报, 2016, 45(11): 2591-2595.

【9】Li H B, Dong J B, Liu R Z, et al. A boron diffusion process for crystalline silicon solar cells with back junction and back contact: CN201310617109.5[P]. 2014-03-19.
李海波, 董经兵, 刘仁中, 等. 一种背结背接触晶体硅太阳电池的硼扩散工艺: CN201310617109.5[P]. 2014-03-19.

【10】Yang N N, Shen H L, Jiang Y, et al. Influence of SiO2 nanosphere on the performance of p+ layer formed by B diffusion from boric acid solution[J]. Materials Review, 2017, 31(12): 11-14.
杨楠楠, 沈鸿烈, 蒋晔, 等. 二氧化硅纳米球对硼酸源扩散形成p+硅层性能的影响[J]. 材料导报, 2017, 31(12): 11-14.

【11】Liu K, Liu Y X,Niu J J, et al. Simulation of temperature field distribution finite element during laser cladding TiCN coatings on titanium alloy[J]. Laser Journal, 2016(8): 27-32.
刘奎, 刘雅璇, 牛钧杰, 等. 钛合金表面激光熔覆TiCN涂层及其温度场有限元模拟[J]. 激光杂志, 2016(8): 27-32.

【12】Liu J, Luo K Y, Jing X,et al. Simulation and analysis of the temperature field in laser cladding 316L stainless steel[J]. Chinese Journal of Lasers, 2015, 42(s1): s103002.
刘娟, 罗开玉, 景祥, 等. 激光熔覆316L不锈钢温度场模拟与分析[J]. 中国激光, 2015, 42(s1): s103002.

【13】Liu H, Yu G, He X L, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 1203007.
刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 1203007.

【14】Gong X Y, Gao S Y, Xian S Y, et al. Warp deformation in single-track laser cladding based on temperature characteristics[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101410.
宫新勇, 高士友, 咸士玉, 等. 基于温度特征的单道激光熔覆翘曲变形[J]. 激光与光电子学进展, 2017, 54(10): 101410.

【15】Hong J. Preparation of boron doped silicon nano paste and its fundamental research for application in back surface field of high-efficiency silicon solar cells[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 49-55.
洪捐. 硼掺杂硅纳米浆料制备及其在高效晶硅太阳能电池背场中的应用基础研究[D]. 南京: 南京航空航天大学, 2016: 49-55.

【16】Hong J, Xuan R W, Huang H B, et al. B-doped nano-Si-paste by picosecond laser cladding[J]. Chinese Journal of Lasers, 2016, 43(9): 0902006.
洪捐, 宣容卫, 黄海冰, 等. 皮秒激光熔覆硼掺杂硅纳米浆料的实验研究[J]. 中国激光, 2016, 43(9): 0902006.

【17】Bahrami A, Helenbrook B T, Valentine D T, et al. Fluid flow and mixing in linear GTA welding of dissimilar ferrous alloys[J]. International Journal of Heat and Mass Transfer, 2016, 93: 729-741.

【18】Sun P, Li M, Yang Q X, et al. Numerical simulation of the accumulative photo-thermal effect in silicon under illumination with sequential laser pulses[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(1): 158-163.
孙鹏, 李沫, 杨庆鑫, 等. 硅在脉冲激光作用下温度积累效应的数值模拟[J]. 太赫兹科学与电子信息学报, 2018, 16(1): 158-163.

【19】Chari V D, Sharma D V S G K, Prasad P S R, et al. Dependence of thermal conductivity in micro to nano silica[J]. Bulletin of Materials Science, 2013, 36(4): 517-520.

【20】Li Z M, Nie J S, Hu Y Z, et al. Heat accumulation effects on the ablation of silicon with high frequency femtosecond laser[J]. Laser & Infrared, 2017, 47(4): 410-415.
李志明, 聂劲松, 胡瑜泽, 等. 高频飞秒激光对硅材料烧蚀的热积累效应[J]. 激光与红外, 2017, 47(4): 410-415.

【21】Zhao K F, Cheng G G, Zhang Z Q, et al. Numerical simulation of solidification process of molten silicon in horizontal tube[J]. Hot Working Technology, 2017, 46(9): 93-96.
赵凯峰, 程广贵, 张忠强, 等. 熔融硅在水平管道凝固过程的数值分析[J]. 热加工工艺, 2017, 46(9): 93-96.

【22】Shen Z H, Ni X W, Lu J. Theoretical calculation for thermal effect of the semiconductors induced by the laser pulse[J]. Journal of Optoelectronics·Laser, 1998, 9(4): 344-346.
沈中华, 倪晓武, 陆建. 激光对半导体材料热作用的理论计算[J]. 光电子·激光, 1998, 9(4): 344-346.

【23】Yu T B, Sun J Y, Wang H, et al. Parameter selection of laser cladding TC11 titanium alloy simulated by temperature field[J]. Laser & Infrared, 2017, 47(3): 284-290.
于天彪, 孙佳钰, 王航, 等. 温度场模拟激光熔覆TC11钛合金工艺参数的选择[J]. 激光与红外, 2017, 47(3): 284-290.

【24】Tao C H. Basic experiment and simulation on laser cladding forming of metal powder[D]. Dalian: Dalian University of Technology, 2008: 29-30.
陶春华. 金属粉末激光熔覆成形的基础实验与模拟[D]. 大连: 大连理工大学, 2008: 29-30.

【25】Zhang Q M, Liu W J, Yang S, et al. Analysis model of dilution and related factor in process of powder feeding laser cladding[J]. Journal of Iron and Steel Research, 2002, 14(1): 11-15.
张庆茂, 刘文今, 杨森, 等. 送粉式激光熔覆稀释率的分析模型及其影响因素[J]. 钢铁研究学报, 2002, 14(1): 11-15.

【26】Hong J, Wang W, Shi B, et al. Screen-printed Si paste for localized B doping in a back surface field[J]. Proceedings of the IEEE, 2015, 36(1): 8-10.

引用该论文

Xu Long,Hong Juan,Wang Wei. Simulation Analysis and Experimental Study on Nanosecond Laser Cladding Silicon Nano Film[J]. Chinese Journal of Lasers, 2019, 46(4): 0402008

徐龙,洪捐,汪炜. 纳秒激光熔覆硅纳米薄膜的仿真分析及实验研究[J]. 中国激光, 2019, 46(4): 0402008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF