首页 > 论文 > 中国激光 > 46卷 > 4期(pp:405003--1)

噪声情况下模型式无波前探测自适应光学系统扩展目标成像校正

Extended Object Imaging Correction for Model-Based Wavefront Sensorless Adaptive Optics System Under Noise

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用88单元变形镜及电荷耦合器件成像器件, 以扩展目标为校正对象, 建立了带有噪声的无波前探测自适应光学系统模型。在噪声情况下, 验证了扩展目标成像时掩模探测器信号和波前相位的平均梯度平方和之间存在线性关系。将基于此线性关系的算法作为无波前探测自适应光学系统的控制算法, 通过仿真, 检验了模型式无波前探测自适应光学系统在噪声情况下对扩展目标成像的校正能力。结果表明, 相同湍流条件、不同信噪比下的校正效果接近。按照湍流条件从小到大的顺序, 与信噪比为20 dB的结果相比, 信噪比为5 dB时校正后的平均均方根相对误差分别为3.71%,2.94%和2.42%, 说明基于该线性关系的模型控制算法具有较强的抗噪能力。

Abstract

The wavefront sensorless adaptive optics (WFSless AO) system under noise is established using an 88-element deformable mirror and a charge coupled device imaging device and with an extended object as a correction object. The linear relationship between the masked detector signal and the mean-square wavefront gradient of the extended object imaging under noise is verified. The algorithm based on this linear relationship is used as the control algorithm of the WFSless AO system. The simulation experiment is carried out to check the correction ability of the model-based WFSless AO system for extended object imaging under noise. The results show that the correction effects are very close under the same turbulence condition but different signal-to-noise ratios. According to the order of turbulence conditions from small to large, the averaged root mean square relative errors after correction under a signal-to-noise ratio of 5 dB are 3.71%, 2.94% and 2.42%, respectively, if compared with the results under a signal-to-noise ratio of 20 dB. The above results indicate that the model-based control algorithm with this linear relationship has a relatively good anti-noise capability.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/cjl201946.0405003

所属栏目:光束传输与控制

基金项目:国家自然科学基金(11573011, 61601194)、江苏省高校“青蓝工程”中青年学术带头人资助项目、江苏省“六大人才高峰”高层次人才项目(KTHY-058)、连云港市“521高层次人才培养工程”项目(LYG52105-2018025)、江苏省研究生教育教学改革课题(JGLX18-160)、江苏省研究生科研与实践创新计划项目(KYCX18_2593)

收稿日期:2018-10-31

修改稿日期:2018-12-16

网络出版日期:2019-01-18

作者单位    点击查看

马良:中国矿业大学信息与控制工程学院, 江苏 徐州 221116淮海工学院电子工程学院, 江苏 连云港 222005
徐奇:中国矿业大学信息与控制工程学院, 江苏 徐州 221116
吴阳:淮海工学院电子工程学院, 江苏 连云港 222005
杨慧珍:淮海工学院电子工程学院, 江苏 连云港 222005
杨海波:中国电子科技集团公司第五十三研究所光电信息控制和安全技术重点实验室, 天津 300308
周渊深:淮海工学院电子工程学院, 江苏 连云港 222005

联系人作者:杨慧珍(yanghz526@126.com)

【1】Chen B, Yang Y, Geng Z X. Adaptive optics and its military application[J]. Fire Control & Command Control, 2011, 8(8): 160-163.
陈波, 杨阳, 耿则勋. 自适应光学技术及其军事应用[J]. 火力与指挥控制, 2011, 8(8): 160-163.

【2】Pircher M, Zawadzki R J. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging[J]. Biomedical Optics Express, 2017, 8(5): 2536-2562.

【3】Bonora S, Jian Y, Zhang P, et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens[J]. Optics Express, 2015, 23(17): 21931-21941.

【4】Zhao Q, Shi X, Gong W, et al. Large field-of-view and deep tissue optical micro-imaging based on parallel wavefront correction algorithm[J]. Chinese Journal Lasers, 2018, 45(12): 1207001.
赵琪, 石鑫, 龚薇, 等. 基于并行波前校正算法的大视场深穿透光学显微成像[J]. 中国激光, 2018, 45(12): 1207001.

【5】Zhang S, Zhang J W, Mu J, et al. Dynamical phase error control and bandwidth analysis for coherent beam combination based on stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0514003.
张森, 张军伟, 母杰, 等. 基于随机并行梯度下降算法的相干合成动态相差控制与带宽分析[J]. 光学学报, 2018, 38(5): 0514003.

【6】Yang H Z, Soloviev O, Verhaegen M. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects[J]. Optics Express, 2015, 23(19): 24587-24601.

【7】Yang H Z, Li X Y. Effects of imaging system noise on the correction capability of adaptive optics without a wavefront sensor[J]. Chinese Journal of Lasers, 2010, 37(10): 2520-2521.
杨慧珍, 李新阳. 成像系统噪声对无波前探测自适应光学校正效果的影响[J]. 中国激光, 2010, 37(10): 2520-2521.

【8】Yang H Z, Li X Y. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 2011, 43(3): 630-635.

【9】Yao R, Templeton A K, Liao Y X, et al. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent[J]. Brachytherapy, 2014, 13(4): 352-360.

【10】Piatrou P, Roggemann M. Beaconless stochastic parallel gradient descent laser beam control: numerical experiments[J]. Applied Optics, 2007, 46(27): 6831.

【11】Bonora S, Zawadzki R J. Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography[J]. Optics Letters, 2013, 38(22): 4801.

【12】Song H, Fraanje R, Schitter G, et al. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system[J]. Optics Express, 2010, 18(23): 24070-24084.

【13】Yang H Z, Zhang Z, Wu J. Performance comparison of wavefront-sensorless adaptive optics systems by using of the focal plane[J]. International Journal of Optics, 2015, 1-8.

【14】Yang H Z, Wang B, Liu R M, et al. Analysis of anti-noise capability of model-based wavefront sensorless adaptive optics system[J]. Infrared and Laser Engineering, 2017, 46(8): 0817002.
杨慧珍, 王斌, 刘瑞明, 等. 模型式无波前探测自适应光学系统抗噪能力分析[J]. 红外与激光工程, 2017, 46(8): 0817002.

【15】Wen L H, Yang P, Wang S, et al. Fast restoration of aberration-degraded extended object based on local region abstraction[J]. IEEE Photonics Journal, 2018, 10(4): 6900613.

【16】Roddier N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180.

引用该论文

Ma Liang,Xu Qi,Wu Yang,Yang Huizhen,Yang Haibo,Zhou Yuanshen. Extended Object Imaging Correction for Model-Based Wavefront Sensorless Adaptive Optics System Under Noise[J]. Chinese Journal of Lasers, 2019, 46(4): 0405003

马良,徐奇,吴阳,杨慧珍,杨海波,周渊深. 噪声情况下模型式无波前探测自适应光学系统扩展目标成像校正[J]. 中国激光, 2019, 46(4): 0405003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF