首页 > 论文 > 中国激光 > 46卷 > 4期(pp:405002--1)

环形阵列艾里涡旋光束的自聚焦特性

Self-Focusing Characteristics of Circular Array Airy Vortex Beams

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

理论上提出并实验制备了一种环形阵列艾里涡旋光束(CAAVB), 该CAAVB由按环形阵列分布的多个艾里光形成, 并具有自聚焦特性。通过增加艾里光阵列数, 能够有效提高自聚焦光束的光场强度。仿真结果表明, 在相同的条件下, 加载光学涡旋能明显提高CAAVB的自聚焦特性。此外, 通过调节环形艾里光阵列的半径来改变光束聚焦的位置, 实现对焦距的非机械调节。

Abstract

A kind of circular array Airy vortex beam (CAAVB) is theoretically proposed and experimentally generated, which consists of multiple Airy beams arranged in an annular array and has the self-focusing performance. By increasing the number of Airy beam arrays, the self-focusing intensity can be effectively increased. The simulation results show that under the same conditions, the self-focusing characteristics of a CAAVB can be greatly improved by loading an optical vortex. In addition, by adjusting the radius of the annular airy beam array, the focusing position of the beam can be controlled and the non-mechanical adjustment of focus distance can be realized.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0405002

所属栏目:光束传输与控制

基金项目:国家自然科学基金(61377014)、浙江省自然科学基金(LY17A040002)

收稿日期:2018-11-01

修改稿日期:2018-12-07

网络出版日期:2019-01-14

作者单位    点击查看

赖松陶:浙江师范大学数理与信息工程学院, 浙江 金华 321004浙江省光信息检测与显示技术研究重点实验室, 浙江 金华 321004
兰燕平:浙江师范大学数理与信息工程学院, 浙江 金华 321004浙江省光信息检测与显示技术研究重点实验室, 浙江 金华 321004
毛红行:浙江师范大学数理与信息工程学院, 浙江 金华 321004浙江省光信息检测与显示技术研究重点实验室, 浙江 金华 321004
钱义先:浙江师范大学数理与信息工程学院, 浙江 金华 321004浙江省光信息检测与显示技术研究重点实验室, 浙江 金华 321004桂林电子科技大学广西自动检测技术与仪器重点实验室, 广西 桂林 541004

联系人作者:钱义先(qianyixian@zjnu.edu.cn)

【1】Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267.

【2】Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981.

【3】Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

【4】Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams[J]. Optics Express, 2008, 16(17): 12880-12891.

【5】Chu X X, Zhou G Q, Chen R P. Analytical study of the self-healing property of Airy beams[J]. Physical Review A, 2012, 85(1): 013815.

【6】Li S Z, Shen X J, Wang L. Generation and control of self-accelerating Airy beams[J]. Chinese Journal of Lasers, 2018, 45(5): 0505003.
李绍祖, 沈学举, 王龙. 自加速艾里光束的生成及控制[J]. 中国激光, 2018, 45(5): 0505003.

【7】Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.

【8】Shvedov V G, Rode A V, Izdebskaya Y V, et al. Giant optical manipulation[J]. Physical Review Letters, 2010, 105(11): 707-712.

【9】Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.

【10】Chong A, Renninger W H, Christodoulides D N, et al. Airy-Bessel wave packets as versatile linear light bullets[J]. Nature Photonics, 2010, 4(2): 103-106.

【11】Gurgov H C, Cohen O. Spatiotemporal pulse-train solitons[J].Optics Express, 2009, 17(9): 7052-7058.

【12】Abdollahpour D, Suntsov S, Papazoglou D G, et al. Spatiotemporal Airy light bullets in the linear and nonlinear regimes[J]. Physical Review Letters, 2010, 105(25): 253901.

【13】Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 2014, 8(4): 302-306.

【14】Juhasz T, Loesel F H, Kurtz R M, et al. Corneal refractive surgery with femtosecond lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 902-910.

【15】Tzortzakis S, Bergé L, Couairon A, et al. Breakup and fusion of self-guided femtosecond light pulses in air[J]. Physical Review Letters, 2001, 86(24): 5470-5473.

【16】Efremidis N K, Christodoulides D N. Abruptly autofocusing waves[J]. Optics Letters, 2010, 35(23): 4045-4047.

【17】Jiang Y F, Yu W L, Zhu X W, et al. Propagation characteristics of partially coherent circular Airy beams[J]. Optics Express, 2018, 26(18): 23084-23092.

【18】Zhang Z, Liu J J, Zhang P, et al. Generation of autofocusing beams with multi-Airy beams[J]. Acta Physica Sinica, 2013, 62(3): 034209.
张泽, 刘京郊, 张鹏, 等. 多艾里光束合成自聚焦光束的实验实现[J]. 物理学报, 2013, 62(3): 034209.

【19】Zhuang Y Y, Zhang Y J, Ding B F, et al. Trapping Rayleigh particles using highly focused higher-order radially polarized beams[J]. Optics Communications, 2011, 284(7): 1734-1739.

【20】Prabakaran K, Rajesh K B, Pillai T V S, et al. Tight focusing of phase modulated double ring shaped radially polarized beam with high NA lens[J]. Journal of Optics, 2013, 42(4): 382-387.

【21】Zhao C L, Wang L G, Lu X H. Radiation force generated by high-focusing hollow beam on medium spheres[C]∥Abstract Collection of 2006 Academic Conference of China Optical Society, 2006.
赵承良, 王立刚, 陆璇辉. 高聚焦空心光束对介质小球产生的辐射力[C]∥中国光学学会2006年学术大会论文摘要集, 2006.

【22】Sun X B, Zhu Q H, Liu L Q, et al. Research progress of generation methods of high-power vortex beams[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070001.
孙喜博, 朱启华, 刘兰琴, 等. 高功率涡旋光束产生方法研究进展[J]. 激光与光电子学进展, 2017, 54(7): 070001.

【23】Simpson N B, Allen L, Padgett M J. Optical tweezers and optical spanners with Laguerre-Gaussian modes[J]. Journal of Modern Optics, 1996, 43(12): 2485-2491.

【24】Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 1997, 22(1): 52-54.

【25】Dai H T, Liu Y J, Luo D, et al. Propagation dynamics of an optical vortex imposed on an Airy beam[J]. Optics Letters, 2010, 35(23): 4075-4077.

【26】Cheng K, Xia J S, Zhong X Q. Propagation dynamics and vortex trajectory of an Airy vortex beam in gradient-index media[J]. Acta Photonica Sinica, 2014, 43(9): 0905002.
程科, 夏基深, 钟先琼. 艾里涡旋光束在梯度折射率介质中的动态传输与涡旋轨迹[J]. 光子学报, 2014, 43(9): 0905002.

【27】Dai H T, Liu Y J, Luo D, et al. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation[J]. Optics Letters, 2011, 36(9): 1617-1619.

【28】Cheng Z, Chu X C, Zhao S H, et al. Study of the drift characteristics of Airy vortex beam in atmospheric turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002.
程振, 楚兴春, 赵尚弘, 等. 艾里涡旋光束在大气湍流中的漂移特性研究[J]. 中国激光, 2015, 42(12): 1213002.

【29】Deng D M, Chen C D, Zhao X, et al. Propagation of an Airy vortex beam in uniaxial crystals[J]. Applied Physics B, 2013, 110(3): 433-436.

【30】Liu X Y, Zhao D M. Propagation of a vortex Airy beam in chiral medium[J]. Optics Communications, 2014, 321: 6-10.

【31】Di H P, Zhang Q B, Zhou M C, et al. Propagation of ring Airy Gaussian vortex beams in anisotropic non-Kolmogorov turbulence atmosphere[J]. Chinese Journal of Lasers, 2018, 45(3): 0305001.
狄颢萍, 张淇博, 周木春, 等. 圆艾里高斯涡旋光在各向异性非Kolmogorov湍流大气中的传输[J]. 中国激光, 2018, 45(3): 0305001.

【32】Wu P F, Ke X Z, Song Q Q. Realization of experiment on auto-focusing array Airy beam[J]. Chinese Journal of Lasers, 2018, 45(6): 0605002.
吴鹏飞, 柯熙政, 宋强强. 自聚焦阵列艾里光束的实验实现[J]. 中国激光, 2018, 45(6): 0605002.

【33】Li N, Jiang Y F, Huang K K, et al. Abruptly autofocusing property of blocked circular Airy beams[J]. Optics Express, 2014, 22(19): 22847-22853.

引用该论文

Lai Songtao,Lan Yanping,Mao Hongxing,Qian Yixian. Self-Focusing Characteristics of Circular Array Airy Vortex Beams[J]. Chinese Journal of Lasers, 2019, 46(4): 0405002

赖松陶,兰燕平,毛红行,钱义先. 环形阵列艾里涡旋光束的自聚焦特性[J]. 中国激光, 2019, 46(4): 0405002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF