首页 > 论文 > 中国激光 > 46卷 > 4期(pp:402005--1)

10Ni5CrMoV钢真空激光焊接焊缝的组织与性能

Microstructures and Properties of Weld Bead of 10Ni5CrMoV Steel Obtained with Laser Welding at Vacuum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用真空激光焊接方法对10Ni5CrMoV低合金高强钢进行焊接, 研究了环境压力对焊缝组织和力学性能的影响。结果表明:真空激光焊接可以明显改善激光焊缝的表面成形质量, 增加焊缝熔深; 环境压力对焊缝组织的影响不大, 对热影响区组织的影响明显; 不同环境压力下得到的焊缝均由马氏体组成; 在热影响区, 随着环境压力的降低, 碳化物逐渐析出, 显微组织由马氏体向马氏体+碳化物+极少量粒状贝氏体转变, 并且出现了少量铁素体; 真空环境下得到的焊缝中马氏体含量降低是硬度下降的主要因素; 在环境压力为10 Pa时, 焊缝硬度较大气环境下的减小6.2%; 拉伸试样均断裂于母材处, 试样出现明显的颈缩现象, 断裂方式为韧性断裂。

Abstract

Laser welding is used to weld 10Ni5CrMoV high strength steel at vacuum. The effects of ambient pressure on the microstructure of weld bead and mechanical properties are studied. The results show that laser welding at vacuum can improve the weld formation quality and increase penetration depth. The ambient pressure has little effect on microstructure of weld bead, while had obvious influence on the microstructure of heat-affected zone. Weld beads obtained at different ambient pressures are all composed of martensite. With the decrease of ambient pressure, carbides precipitate out in heat-affected zone gradually, the microstructure transforms from martensite to martensite with carbide and very few granular bainite, and a small amount of ferrite are obtained. The decrease of martensite content is the main factor of the microhardness decrease in vacuum environment. When the ambient pressure is 10 Pa, the weld hardness decreased by 6.2% compared with the atmosphere. The tensile samples are all broken at the base metal with obvious necking, and the fracture mode is ductile fracture.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/cjl201946.0402005

所属栏目:激光制造

基金项目:国家重点研发计划支持项目(2016YFB1102100)、国家自然科学基金(51675129)

收稿日期:2018-11-07

修改稿日期:2018-12-03

网络出版日期:2019-01-08

作者单位    点击查看

王继明:哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
李俐群:哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
彭根琛:哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
邹吉鹏:哈尔滨焊接研究院有限公司, 黑龙江 哈尔滨 150028
黄瑞生:哈尔滨焊接研究院有限公司, 黑龙江 哈尔滨 150028

联系人作者:王继明(hitwangjiming1996@163.com)

【1】Frank R, Luciano M, Pentti K, et al. Advanced joining techniques in European shipbuilding[J]. Journal of Ship Production, 2004, 20(3): 200-210.

【2】Katsuhiro M. High power laser applications in nippon steel corporation[J]. Proceedings of SPIE, 2000, 3888: 533-542.

【3】Staufer H. Laser hybrid welding for industrial applications[J]. Proceedings of SPIE, 2007, 6346: 634614.

【4】Reisgen U, Olschok S, Jakobs S, et al. Laser beam welding under vacuum of high grade materials[J]. Welding in the World, 2016, 60(3): 403-413.

【5】Brner C, Dilger K, Rominger V. Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser[C]. Proceedings of the 30th ICALEO, 2011: 23-27.

【6】Jiang M, Tao W, Wang S, et al. Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding[J]. Vacuum 2017, 138: 70-79.

【7】Luo Y, Tang X H, Lu F G, et al. Effect of subatmospheric pressure on plasma plume in fiber laser welding[J]. Journal of Materials Processing Technology, 2015, 215: 219-224.

【8】Youhei A, Yousuke K, Hiroshi N, et al. Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminium alloy with high power and high brightness laser[J]. Science and Technology of Welding and Joining, 2014, 19(4): 324-332.

【9】Jakobs, S, Reisgen U. Laser beam welding under reduced pressure—range of possible applications for thick-plates[J]. Stahlbau, 2015, 84: 635-642.

【10】Sokolov M, Salminen A, Katayama S, et al. Reduced pressure laser welding of thick section structural steel[J]. Journal of Materials Processing Technology, 2015, 219: 278-285.

【11】Reisgen U, Olschok S, Turner C. Welding of thick plate copper with laser beam welding under vacuum[J]. Journal of Laser Applications, 2017, 29(2): 022402.

【12】Katayama S, Kobayashi Y,Mizutani M, et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications, 2001, 13(5): 187-192.

【13】Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749-753.

【14】Cai C, Peng G C, Li L Q, et al. Comparative study on laser welding characteristics of aluminium alloy under atmospheric and subatmospheric pressures[J]. Science and Technology of Welding and Joining, 2014, 19(7): 547-553.

【15】Peng G C. Laser welding characteristics of aluminum and nickel-base alloys under vacuum environment[D]. Harbin: Harbin Institute of Technology, 2015.
彭根琛. 铝与镍合金的真空环境激光焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

【16】Luo Y. Research on plasma plume and molten pool behavior in fiber laser welding under subatmospheric pressure[D]. Shanghai: Shanghai Jiao Tong University, 2015: 32-33.
罗燕. 负压激光焊接过程蒸气羽烟及熔池行为研究[D]. 上海: 上海交通大学, 2015.

【17】Wu Q, Gong J K, Chen G Y, et al. Research on laser welding of vehicle body[J]. Optics & Laser Technology, 2008, 40(2): 420-426.

【18】Luo Y, Tang X H, Lu F G. Experimental study on deep penetrated laser welding under local subatmospheric pressure[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(5/6/7/8): 699-706.

【19】Pang S Y, Chen L L, Zhou J X, et al. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding[J]. Journal of Physics D: Applied Physics, 2011, 44(2): 025301.

【20】Fabbro R, Hirano K, Pang S Y. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure[J]. Journal of Laser Applications, 2016, 28(2): 022427.

【21】Wang Y Z, Chen X. Vacuum technology[M]. Beijing: Beijing University of Aeronautics and Astronautics press, 2007: 39-82.
王欲知, 陈旭. 真空技术[M]. 北京: 北京航空航天大学出版社, 2007: 39-82.

【22】Hu L H, Yan Q, Huang J, et al. Microstructures and mechanical properties on laser welded joints of automotive high strength complex phase steel[J]. Advanced Materials Research, 2010, 97/101: 3957-3962.

【23】Shen B L, Li L, Yue C L. Summarization of relationship between tensile strength and hardness of iron-steel materials[J]. Modern Cast Iron, 2012, 32(1): 93-96.
沈保罗, 李莉, 岳昌林. 钢铁材料抗拉强度与硬度关系综述[J]. 现代铸铁, 2012, 32(1): 93-96.

【24】Huan P C, Wang X N, Zhu T C, et al. Microstructure and properties of laser welded joints of 800 MPa hot rolled high strength steel[J]. Chinese Journal of Lasers, 2019, 46(1): 0102002.
环鹏程, 王晓南, 朱天才, 等. 800 MPa级热轧高强钢激光焊接接头的组织性能研究[J]. 中国激光, 2019, 46(1): 0102002.

【25】Wang J F, Wang L J, Yang L J, et al. Research on microstructure and properties of laser welding DP1000 high-strength steel weld joints[J]. Chinese Journal of Lasers, 2014, 41(9): 0903003.
王金凤, 王立君, 杨立军, 等. DP1000高强钢激光焊接接头组织性能研究[J]. 中国激光, 2014, 41(9): 0903003.

引用该论文

Wang Jiming,Li Liqun,Peng Genchen,Zou Jipeng,Huang Ruisheng. Microstructures and Properties of Weld Bead of 10Ni5CrMoV Steel Obtained with Laser Welding at Vacuum[J]. Chinese Journal of Lasers, 2019, 46(4): 0402005

王继明,李俐群,彭根琛,邹吉鹏,黄瑞生. 10Ni5CrMoV钢真空激光焊接焊缝的组织与性能[J]. 中国激光, 2019, 46(4): 0402005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF