首页 > 论文 > 中国激光 > 46卷 > 4期(pp:412001--1)

基于指示单光子源和量子存储的量子密钥分配

Quantum Key Distribution Based on Heralded Single Photon Sources and Quantum Memory

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于指示单光子源和量子存储的量子密钥分配方案。分析了其密钥生成率与安全传输距离和量子存储时间的关系, 以及量子存储的退相干效应对最终密钥生成率的影响。研究了量子存储对基于指示单光子源的测量设备无关量子密钥分配方案的影响。仿真结果表明,在指示单光子源下, 量子存储的实际相干时间增加, 使得系统的安全传输距离增大, 且量子退相干效应对最终的密钥生成率的影响微弱。

Abstract

A quantum key distribution scheme based on heralded single photon sources and quantum memory is studied. The relationship between key generation rate and safe transmission distance and storage time is analyzed, and the effect of decoherence effect of quantum memory on the final key generation rate is analyzed. The influence of quantum memory on measurement-device-independent quantum key distribution scheme based on heralded single photon sources is studied. The simulation results show that under heralded single photon sources, the increase of the actual coherence time of the quantum memory makes the safe transmission distance of the system increase, and the quantum decoherence effect has a weak influence on the final key generation rate.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN918

DOI:10.3788/cjl201946.0412001

所属栏目:量子光学

基金项目:国家自然科学基金(61802302, 61472472, 61772418)、陕西省自然科学基础研究计划(2017JM6037)

收稿日期:2018-11-20

修改稿日期:2018-12-05

网络出版日期:2018-12-21

作者单位    点击查看

何业锋:西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121西安邮电大学通信与信息工程学院, 陕西 西安 710121
王登:西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121西安邮电大学通信与信息工程学院, 陕西 西安 710121
杨红娟:西安邮电大学通信与信息工程学院, 陕西 西安 710121
宋畅:西安邮电大学通信与信息工程学院, 陕西 西安 710121
李东琪:西安邮电大学通信与信息工程学院, 陕西 西安 710121

联系人作者:王登(1325703108@qq.com)

【1】Bennett C H, Brassard G. An update on quantum cryptography[M]∥Blakley G R, Chaum D. Advances in Cryptology. Berlin, Heidelberg: Springer, 1984: 475-480.

【2】Bennett C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(21): 3121-3134.

【3】Liu Y M, Wang C, Huang D, et al. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.
刘友明, 汪超, 黄端, 等. 高速连续变量量子密钥分发系统同步技术研究[J]. 光学学报, 2015, 35(1): 0106006.

【4】Zhu Q L, Shi L, Wei J H, et al. Background light suppression in free space quantum key distribution [J]. Laser & Optoelectronics Progress, 2018, 55(6): 060004.
朱秋立, 石磊, 魏家华, 等. 自由空间量子密钥分配的背景光抑制[J]. 激光与光电子学进展, 2018, 55(6): 060004.

【5】Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.

【6】Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols[J]. Journal of Modern Optics, 2011, 58(8): 680-685.

【7】Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333.

【8】Thomas O, Yuan Z L, Dynes J F, et al. Efficient photon number detection with silicon avalanche photodiodes[J]. Applied Physics Letters, 2010, 97(3): 031102.

【9】Gerhardt I, Liu Q,Lamas-Linares A, et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system[J]. Nature Communications, 2011, 2: 349.

【10】Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2007, 8(6): 622-635.

【11】Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

【12】Ma X C, Sun S H, Jiang M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(4): 042335.

【13】Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2013, 87(5): 052329.

【14】Wang Q, Wang X B. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources[J]. Physical Review A, 2013, 88(5): 052332.

【15】Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 2014, 63(3): 030302.
东晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 030302.

【16】Kang D N, He Y F. Quantum key distribution protocol based on asymmetric channels of odd coherent sources [J]. Acta Optica Sinica, 2017, 37(6): 0627001.
康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001.

【17】Zhu Z D, Zhang X, Zhao S H, et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703.
朱卓丹, 张茜, 赵尚弘, 等. 预报相干光子对的测量设备无关量子密钥分发协议[J]. 激光与光电子学进展, 2017, 54(12): 122703.

【18】Abruzzo S, Kampermann H, Bru D. Measurement-device-independent quantum key distribution with quantum memories[J]. Physical Review A, 2014, 89: 012301.

【19】Sun Y, Zhao S H, Dong C. Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.
孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 0327001.

【20】He Y F, Li D Q, Song C, et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum[J]. Chinese Journal of Lasers, 2018, 45(7): 0712001.
何业锋, 李东琪, 宋畅, 等. 基于奇相干光源和轨道角动量的量子密钥分配协议[J]. 中国激光, 2018, 45(7): 0412001.

【21】Fasel S, Alibart O, Tanzilli S, et al. High-quality asynchronous heralded single-photon source at telecom wavelength[J]. New Journal of Physics, 2004, 6: 163.

【22】Quan D X, Pei C X, Zhu C H, et al. New method of decoy state quantum key distribution with a heralded single-photon source[J]. Acta Physica Sinica, 2008, 57(9): 5600-5604.
权东晓, 裴昌幸, 朱畅华, 等. 一种新的预报单光子源诱骗态量子密钥分发方案[J]. 物理学报, 2008, 57(9): 5600-5604.

【23】Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.
朱峰, 王琴. 基于指示单光子源的量子密钥分配协议[J]. 光学学报, 2014, 34(6): 0627002.

【24】He Y F, Song C, Li D Q, et al. Asymmetric-channel quantum key distribution based on heralded single-photon sources[J]. Acta Optica Sinica, 2018, 38(3): 0827001.
何业锋, 宋畅, 李东琪, 等. 基于指示单光子源的非对称信道量子密钥分配[J]. 光学学报, 2018, 38(3): 0827001.

【25】Zhou Y Y, Zhang H Q, Zhou X J, et al. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source[J]. Acta Physica Sinica, 2013, 62(20): 200302.
周媛媛, 张合庆, 周学军, 等. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析[J]. 物理学报, 2013, 62(20): 200302.

【26】Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state[J]. Quantum Information Processing, 2016, 15(10): 4253-4263.

【27】Panayi C, Razavi M, Ma X F, et al. Memory-assisted measurement-device-independent quantum key distribution[J]. New Journal of Physics, 2014, 16(4): 043005.

引用该论文

He Yefeng,Wang Deng,Yang Hongjuan,Song Chang,Li Dongqi. Quantum Key Distribution Based on Heralded Single Photon Sources and Quantum Memory[J]. Chinese Journal of Lasers, 2019, 46(4): 0412001

何业锋,王登,杨红娟,宋畅,李东琪. 基于指示单光子源和量子存储的量子密钥分配[J]. 中国激光, 2019, 46(4): 0412001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF