首页 > 论文 > 中国激光 > 46卷 > 4期(pp:402007--1)

基于机器视觉的铝合金激光清洗实时检测系统

Machine Vision-Based Real-Time Monitor System for Laser Cleaning Aluminum Alloy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用高速电耦合器件与发光二极管光源实时获取激光清洗后铝合金的表面图像, 设计了铝合金表面氧化膜激光清洗机器视觉在线检测系统, 提出了针对激光清洗过程的动态阈值快速定位耦合算法。所提算法解决了激光高速清洗过程中表面光照不均的问题, 实现了激光清洗过程中清洗合格区域与不合格区域的准确分割及快速定位。所设计的在线检测系统能够实时检测铝合金表面氧化膜的清洗质量, 缩短了检测时间, 提高了检测准确度, 可以保障整体的清洗质量。

Abstract

Surface images of aluminum alloy after laser cleaning are obtained in real-time with a high speed coupled device and light emitting diode light sources. We design an on-line detection system based on machine vision and propose a dynamic threshold fast position coupling algorithm for laser cleaning aluminum alloy. The proposed algorithm solves the problem of uneven light in laser high-speed cleaning process, realizes the accurate segmentation and the quick positioning of qualified and unqualified areas. The proposed system can detect the quality of the laser cleaning aluminum alloy in real-time. The detection time is reduced, and the recognition accuracy is improved. The system can ensure the cleaning quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0402007

所属栏目:激光制造

基金项目:国家自然科学基金(51705173)

收稿日期:2018-11-26

修改稿日期:2018-12-24

网络出版日期:2019-01-08

作者单位    点击查看

史天意:华中科技大学材料科学与工程学院, 湖北 武汉 430074
周龙早:华中科技大学材料科学与工程学院, 湖北 武汉 430074
王春明:华中科技大学材料科学与工程学院, 湖北 武汉 430074
米高阳:华中科技大学材料科学与工程学院, 湖北 武汉 430074
蒋平:华中科技大学机械科学与工程学院, 湖北 武汉 430074

联系人作者:王春明(wangchunminghust@126.com)

【1】Lu Y F, Lee Y P, Hong M H, et al. Acoustic wave monitoring of cleaning and ablation during excimer laser interaction with copper surfaces[J]. Applied Surface Science, 1997, 119(1/2): 137-146.

【2】Whitehead D J, Crouse P L, Schmidt M J J, et al. Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy[J]. Applied Physics A: Materials Science & Processing, 2008, 93(1): 123-127.

【3】Klein S, Hildenhagen J, Dickmann K, et al. LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass[J]. Journal of Cultural Heritage, 2000, 1: S287-S292.

【4】Lee J M, Watkins K G, Steen W M. In-process chromatic monitoring in the laser cleaning of marble[J].Journal of Laser Applications, 2001, 13(1): 19-25.

【5】Khedr A, Papadakis V, Pouli P, et al. The potential use of plume imaging for real-time monitoring of laser ablation cleaning of stonework[J]. Applied Physics B, 2011, 105(2): 485-492.

【6】Tong Y Q, Shen Q, Cao M, et al. Acoustic monitoring during rust removal by dry laser cleaning[J]. International Journal of Nonlinear Science, 2013, 16(3): 225-229.

【7】Tong Y Q, Zhang Y K, Yao H B, et al. Real-time monitoring system for laser derusting based on plasma intensity[J]. Chinese Journal of Lasers, 2011, 38(10): 1003009.
佟艳群, 张永康, 姚红兵, 等. 基于等离子体光强信号的激光除锈实时监测系统[J]. 中国激光, 2011, 38(10): 1003009.

【8】Chen K X, Feng G Y, Deng G L, et al. Study on the mechanism of laser paint removal based on emission spectrum and composition analysis[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 2956-2960.
陈康喜, 冯国英, 邓国亮, 等. 基于发射光谱及成分分析的激光除漆机理研究[J]. 光谱学与光谱分析, 2016, 36(9): 2956-2960.

【9】Guo J C, Zhu Z M, Yu Y F, et al. Research and application of visual sensing technology based on laser structured light in welding industry[J]. Chinese Journal of Lasers, 2017, 44(12): 1200001.
郭吉昌, 朱志明, 于英飞, 等. 焊接领域激光结构光视觉传感技术的研究及应用[J]. 中国激光, 2017, 44(12): 1200001.

【10】Liu D, Zhang B, Li H X, et al. Detection of micro-cylinder end face defect in complex background[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061006.
刘丹, 张斌, 李慧娴, 等. 复杂背景下微小圆柱端面缺陷检测方法研究[J]. 激光与光电子学进展, 2018, 55(6): 061006.

【11】Yin S B, Ren Y J, Liu T, et al. Review on application of machine vision in modern automobile manufacturing[J]. Acta Optica Sinica, 2018, 38(8): 0815001.
尹仕斌, 任永杰, 刘涛, 等. 机器视觉技术在现代汽车制造中的应用综述[J]. 光学学报, 2018, 38(8): 0815001.

【12】Zhang C, Tan N L, Li X, et al. Research on fog image enhancement technology based on improved Retinex algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 309-316.
张驰, 谭南林, 李响, 等. 基于改进型Retinex算法的雾天图像增强技术研究[J]. 北京航空航天大学学报, 2019, 45(2): 309-316.

【13】Liu X L. One method of image pretreatment to increase image′s information entropy[J]. Geomatics & Spatial Information Technology, 2016, 39(7): 21-23, 26.
刘学林. 一种提高影像信息熵的图像预处理方法[J]. 测绘与空间地理信息, 2016, 39(7): 21-23, 26.

【14】Chen G F, Guan G Y, Wei X. Online stamping parts surface defects detection based on machine vision[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011501.
陈广锋, 管观洋, 魏鑫. 基于机器视觉的冲压件表面缺陷在线检测研究[J]. 激光与光电子学进展, 2018, 55(1): 011501.

【15】He Z Y, Sun L N, Chen L G. Fast computation of threshold based on Otsu criterion[J]. Acta Electronica Sinica, 2013, 41(2): 267-272.
何志勇, 孙立宁, 陈立国. Otsu准则下分割阈值的快速计算[J]. 电子学报, 2013, 41(2): 267-272.

【16】Xiang S B, Su G D, Chen J S, et al. Brick stack anomaly detection and recognition based on machine vision[J]. Acta Optica Sinica, 2011, 31(7): 0715002.
向守兵, 苏光大, 陈健生, 等. 基于机器视觉的码坯异常检测与识别[J]. 光学学报, 2011, 31(7): 0715002.

【17】Hu X T, Dong Y Y. Detecting defects of metal cans′ inner wall based on machine vision[J]. Journal of Tianjin University of Science & Technology, 2014, 29(3): 63-67.
胡晓彤, 董莹莹. 基于机器视觉的金属罐内壁缺陷检测[J]. 天津科技大学学报, 2014, 29(3): 63-67.

【18】Min Y Z, Yue B, Ma H F, et al. Rail surface defects detection based on gray scale gradient characteristics of image[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 220-229.
闵永智, 岳彪, 马宏锋, 等. 基于图像灰度梯度特征的钢轨表面缺陷检测[J]. 仪器仪表学报, 2018, 39(4): 220-229.

引用该论文

Shi Tianyi,Zhou Longzao,Wang Chunming,Mi Gaoyang,Jiang Ping. Machine Vision-Based Real-Time Monitor System for Laser Cleaning Aluminum Alloy[J]. Chinese Journal of Lasers, 2019, 46(4): 0402007

史天意,周龙早,王春明,米高阳,蒋平. 基于机器视觉的铝合金激光清洗实时检测系统[J]. 中国激光, 2019, 46(4): 0402007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF