首页 > 论文 > 中国激光 > 46卷 > 4期(pp:401002--1)

小型化可调谐外腔面发射绿光激光器

Compact Tunable External-Cavity Surface-Emitting Green Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以InGaAs多量子阱为有源区材料, 以对抽运光透明的AlGaAs/AlAs为后端分布布拉格反射镜材料, 采用后端抽运方式, 在腔内插入标准具作为滤波元件, 通过腔内倍频, 获得小型化可调谐的光抽运外腔面发射绿光激光器。作为滤波元件, 标准具可压窄基频光的光谱半峰全宽。为了阻止倍频光返回到增益芯片, 标准具镀有倍频光高反膜。激光器的基频光调谐范围超过10 nm, 倍频绿光在中心波长559 nm处的调谐范围为4 nm, 光谱半峰全宽为1.0 nm, 最大输出功率为65 mW。

Abstract

By the use of a semiconductor gain chip with InGaAs multiple quantum wells as materials in the active region and the AlGaAs/AlAs, transparent to the pump light, as distributed Bragg reflectors, along with the end-pump geometry to simplify the device structure and an inserted etalon as the tuning element, an optically-pumped compact tunable external-cavity surface-emitting green laser is realized by the intra-cavity frequency doubling technology. The employed etalon narrows the laser linewidth as a tuning element. To prevent the second harmonic from returning to the gain chip, the etalon is coated with a high-reflectivity film at the wavelength of the second harmonic. The tuning range of the fundamental wave is over 10 nm and that of the second harmonic is 4 nm centering at 559 nm. The spectral linewidth of the second harmonic is 1.0 nm and the maximum output power is 65 mW.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN245

DOI:10.3788/cjl201946.0401002

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金面上项目(61575011)、重庆市基础研究与前沿探索重点项目(cstc2015jcyjBX0098)、重庆市基础研究与前沿探索一般项目(cstc2018jcyjAX0319)、重庆市高校创新团队项目(CXTDX2016 01016)

收稿日期:2018-12-04

修改稿日期:2018-12-27

网络出版日期:2019-01-08

作者单位    点击查看

邱小浪:重庆师范大学物理与电子工程学院, 重庆 401331
陈雪花:重庆师范大学物理与电子工程学院, 重庆 401331
朱仁江:重庆师范大学物理与电子工程学院, 重庆 401331
张鹏:重庆师范大学物理与电子工程学院, 重庆 401331
郭于鹤洋:北京工业大学应用数理学院, 北京 100124
宋晏蓉:北京工业大学应用数理学院, 北京 100124

联系人作者:朱仁江(hhzrj@163.com)

【1】Choudhary S, Nouri K, Elsaie M L. Photodynamic therapy in dermatology a review[J]. Lasers in Medical Science, 2009, 24(6): 971-980.

【2】Albrecht H E, Borys M, Damaschke N, et al. Laser doppler and phase doppler measurement techniques[M]. Heidelberg: Springer Berlin Heidelberg, 2003.

【3】Simbuerger E, Pflanz T, Masters A. Confocal microscopy: new lasers enhance live cell imaging[J]. Physik Journal (Physics Best), 2008: 10-13.

【4】Chellappan K V, Erden E, Urey H. Laser-based displays a review[J]. Applied optics, 2010, 49(25): F79-F98.

【5】Yuan L G, Jiang D S, Wang J J, et al. Green solid-state laser with 230 W output power[J]. Infrared and Laser Engineering, 2008, 37(6): 980-983.
苑利钢, 姜东升, 王建军, 等. 输出功率达230 W的绿光固体激光器[J]. 红外与激光工程, 2008, 37(6): 980-983.

【6】Huang Z M, Ren Z Y, Bai J T. 200 W quasi-continuous-wave green laser with a dual-resonator combined cavity[J]. Acta Photonica Sinica, 2009, 38(6): 1331-1335.
黄智蒙, 任兆玉, 白晋涛. 200 W双谐振腔组合单向输出准连续绿光激光器[J]. 光子学报, 2009, 38(6): 1331-1335.

【7】Dudley D R, Mehl O, Wang G Y, et al. Q-switched diode-pumped Nd∶YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm[J]. Proceedings of SPIE, 2009, 7193: 71930Z.

【8】Fedorova A, Sokolovskii S, Battle R, et al. Green-to-red tunable SHG of a quantum-dot laser in a PPKTP waveguide[J]. Laser Physics Letters, 2012, 9(11): 790-795.

【9】Jechow A, Menzel R, Paschke K, et al. Blue-green light generation using high brilliance edge emitting diode lasers[J]. Laser & Photonics Reviews, 2010, 4(5): 633-655.

【10】Fedorova K A, Battle P R, Livshits D A, et al. 517 nm-538 nm tunable second harmonic generation in a diode-pumped PPKTP waveguide crystal[J]. Proceedings of SPIE, 2015, 9347: 93470D.

【11】Kuznetsov M, Hakimi F, Sprague R, et al. High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams[J]. IEEE Photonics Technology Letters, 1997, 9(8): 1063-1065.

【12】Rahimi-Iman A. Recent advances in VECSELs[J]. Journal of Optics, 2016, 18(9): 093003.

【13】Guina M, Rantamki A, Hrknen A. Optically pumped VECSELs: review of technology and progress[J]. Journal of Physics D, 2017, 50(38): 383001.

【14】Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers[J]. Physics Reports, 2006, 429(2): 67-120.

【15】MacLean A J, Kemp A J, Calvez S, et al. Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader[J]. IEEE Journal of Quantum Electronics, 2008, 44(3): 216-225.

【16】Laurain A, Myara M, Beaudoin G, et al. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser[J]. Optics Express, 2009, 17(12): 9503-9508.

【17】Esposito E, Keatings S, Gardner K, et al. Confocal laser scanning microscopy using a frequency doubled vertical external cavity surface emitting laser[J]. Review of Scientific Instruments, 2008, 79(8): 083702.

【18】Kantola E, Rantamaki A, Leino I, et al. VECSEL-based 590-nm laser system with 8 W of output power for the treatment of vascular lesions[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(1): 7202108.

【19】Blin S, Paquet R,Myara M, et al. Coherent and tunable THz emission driven by an integrated III-V semiconductor laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-11.

【20】Schulze M, Masters A. Optically pumped semiconductor lasers expand the scope of potential applications[J]. Laser Focus World, 2006, 42(12): 77-79.

【21】Calvez S, Hastie J E, Guina M, et al. Semiconductor disk lasers for the generation of visible and ultraviolet radiation[J]. Laser & Photonics Review, 2009, 3(5): 407-434.

【22】Steegmüller U, Kühnelt M, Unold H, et al. Green laser modules to fit laser projection out of your pocket[J]. Proceedings of SPIE, 2008, 6871: 687117.

【23】Fan L, Fallahi M, Murray J T, et al. Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers[J]. Applied Physics Letters, 2006, 88(2): 021105.

【24】Lee J H, Lee S M, Kim T, et al. 7 W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser[J]. Applied physics letters, 2006, 89(24): 241107.

【25】Chilla J, Shu Q Z, Zhou H, et al. Recent advances in optically pumped semiconductor lasers[J]. Proceedings of SPIE, 2007, 6451: 645109.

【26】Hein A, Menzel S, Unger P. High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range[J]. Applied Physics Letters, 2012, 101(11): 111109.

【27】Jewell J L, Harbison J P, Scherer A, et al. Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1332-1346.

【28】Tropper A C, Hoogland S. Extended cavity surface-emitting semiconductor lasers[J]. Progress in Quantum Electronics, 2006, 30(1): 1-43.

【29】Fan L, Hsu T C, Fallahi M, et al. Tunable watt-level blue-green vertical-external-cavity surface-emitting lasers by intracavity frequency doubling[J]. Applied Physics Letters, 2006, 88(25): 251117.

【30】Jiang L D, Zhang X H, Zhan X H, et al. Progress in frequency-doubled external-cavity surface-emitting lasers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090001.
蒋丽丹, 张晓华, 詹小红, 等. 倍频外腔面发射激光器研究进展[J]. 激光与光电子学进展, 2016, 53(9): 090001.

引用该论文

Qiu Xiaolang,Chen Xuehua,Zhu Renjiang,Zhang Peng,Guoyu Heyang,Song Yanrong. Compact Tunable External-Cavity Surface-Emitting Green Laser[J]. Chinese Journal of Lasers, 2019, 46(4): 0401002

邱小浪,陈雪花,朱仁江,张鹏,郭于鹤洋,宋晏蓉. 小型化可调谐外腔面发射绿光激光器[J]. 中国激光, 2019, 46(4): 0401002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF