首页 > 论文 > 中国激光 > 46卷 > 4期(pp:402009--1)

微锻造激光熔覆沉积高性能TC4组织与各向异性

Microstructure and Anisotropy of High Performance TC4 Obtained by Micro Forging Laser Cladding Deposition

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

测量了微锻造处理后激光熔覆沉积TC4试样的残余应力、等轴晶晶粒尺寸和表面粗糙度, 并对沉积态、固溶时效态、微锻造-固溶时效态成形件的室温拉伸性能及各向异性进行了对比分析。结果表明:微锻造-固溶时效后, 晶粒细化为等轴晶, 晶粒大小为70~140 μm; 微锻造处理后, 成形件在水平方向的塑性显著提升, 各方向的拉伸性能均超过锻件, 且各向异性小于10%。

Abstract

The residual stress, equiaxed crystal grain size and surface roughness of laser cladding deposition TC4 samples after micro forging treatment are tested, and room-temperature tensile properties and anisotropy of samples in deposition state, solution state and micro forging-solution aging state are analyzed. The results show that the columnar crystal grains transform into equiaxed grain with size variation from 70 μm to 140 μm after micro forging treatment. After micro forging treatment, the plasticity of the formed parts in horizontal direction is significantly improved, the tensile properties in all directions are higher than those of the forging parts, and the anisotropy of the formed parts is less than 10%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG665;TG113.25

DOI:10.3788/cjl201946.0402009

所属栏目:激光制造

基金项目:国家重点研发计划(2016YFB1100102)、国家自然科学基金(51775417)

收稿日期:2018-12-04

修改稿日期:2018-12-05

网络出版日期:2019-01-08

作者单位    点击查看

张金智:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
张安峰:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
王宏:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
张晓星:西安交通大学金属材料强度国家重点实验室, 陕西 西安 710049
王豫跃:西安交通大学金属材料强度国家重点实验室, 陕西 西安 710049

联系人作者:张安峰(zhangaf@mail.xjtu.edu.cn)

【1】Wang H M, Zhang S Q, Tang H B, et al. Research progress of laser rapid prototyping technology for large titanium alloy structures[J]. Aviation Precision Manufacturing Technology, 2008, 44(6): 28-30.
王华明, 张述泉, 汤海波, 等. 大型钛合金结构激光快速成形技术研究进展[J]. 航空精密制造技术, 2008, 44(6):28-30.

【2】Bai L, Zhao Z G, Gong H B,et al. Special processing: development of laser forming technology for titanium alloy aircraft structure[J]. Aeronautical Manufacturing Technology, 2013(11): 38-44.
柏林, 赵志国, 龚海波, 等. 特种加工: 航空用钛合金结构件激光成形技术研究进展[J]. 航空制造技术, 2013(11): 38-44.

【3】Li J, Lin X, Qian Y H, et al. Study on microstructure and property of laser solid forming TC4 titanium alloy[J]. Chinese Journal of Lasers, 2014, 41(11): 1103010.
李静, 林鑫, 钱远宏, 等. 激光立体成形TC4钛合金组织和力学性能研究[J]. 中国激光, 2014, 41(11): 1103010.

【4】Shi B F, Zhang A F, Qi B L, et al. Influence of heat accumulation on microstructure and property of Ti-6Al-4V in laser direct forming[J]. Laser Technology, 2016, 40(1): 29-32.
师博飞, 张安峰, 齐宝路, 等. 热积累对激光直接成形Ti-6Al-4V组织和性能的影响[J]. 激光技术, 2016, 40(1): 29-32.

【5】Chen J, Zhang S Y, Xue L,et al. Mechanical properties of Ti-6Al-4V alloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 2007, 36(3): 475-479.
陈静, 张霜银, 薛蕾, 等. 激光快速成形Ti-6Al-4V合金力学性能[J]. 稀有金属材料与工程, 2007, 36(3): 475-479.

【6】Froes F H, Dutta B. The additive manufacturing (AM) of titanium alloys[J]. Advanced Materials Research, 2014, 1019: 19-25.

【7】Kobryn P A, Ontko N R, Perkins L P, et al. Additive manufacturing of aerospace alloys for aircraft structures[J]. NATO/OTAN, 2006(3): 1-14.

【8】Bermingham M J, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions[J]. Acta Materialia, 2015, 91: 289-303.

【9】Brandl E, Schoberth A, Leyens C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)[J]. Materials Science and Engineering A, 2012, 532: 295-307.

【10】Kobryn P A, Semiatin S L. The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9): 40-42.

【11】Gao X L, Xia T D, Wang X J, et al. Present research status for metals refinement methods[J]. Metallic Functional Materials, 2009, 16(6): 60-65.
高晓龙, 夏天东, 王晓军, 等. 金属晶粒细化方法的研究现状[J]. 金属功能材料, 2009, 16(6): 60-65.

【12】Li L J, Wang Y Y, Zhang A F, et al. Silicon refinement of TC4 grains by induction heating assisted laser cladding deposition[J]. Chinese Journal of Lasers, 2018, 45(6): 83-88.
李丽君, 王豫跃, 张安峰, 等. 感应加热辅助Si细化激光熔覆沉积TC4晶粒的研究[J]. 中国激光, 2018, 45(6): 83-88.

【13】Liang Z Y, Zhang A F, Li L J, et al. Induction heating assisted modifier boron refining of TC4 grains by laser cladding deposition[J]. Chinese Journal of Lasers, 2018, 45(7): 0702001.
梁朝阳, 张安峰, 李丽君, 等. 感应加热辅助变质剂硼细化激光熔覆沉积TC4晶粒的研究[J]. 中国激光, 2018, 45(7):0702001.

【14】Donoghue J, Sidhu J, Wescott A, et al. Integration of deformation processing with additive manufacture of Ti-6Al-4V components for improved β grain structure and texture[M]∥TMS 2015 144th Annual Meeting & Exhibition. Cham: Springer International Publishing, 2015: 437-444.

【15】Dekhtyar A I, Mordyuk B N, Savvakin D G, et al. Enhanced fatigue behavior of powder metallurgy Ti-6Al-4V alloy by applying ultrasonic impact treatment[J]. Materials Science and Engineering A, 2015, 641: 348-359.

【16】Wang D P, Huo L X, Zhang Y F, et al. Improvement of fatigue properties of welded joints for titanium alloy by ultrasonic peening method[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 137-141.
王东坡, 霍立兴, 张玉凤, 等. 超声冲击法对钛合金焊接接头疲劳性能的改善[J]. 中国有色金属学报, 2003, 13(6): 137-141.

【17】Du W Z, Du S G, Wang Z B, et al. The study of ultrasonic instrument and grain refinement experiment[J]. Science Technology and Engineering, 2010, 10(11): 2736-2740.
杜伟卓, 杜随更, 汪志斌, 等. 超声冲击设备及晶粒细化实验研究[J]. 科学技术与工程, 2010, 10(11): 2736-2740.

【18】He Z, Hu Y, Qu H T, et al. Research on anisotropy of titanium alloy manufactured by ultrasonic impact treatment and wire and arc additive manufacture[J]. Aerospace Manufacturing Technology, 2016(6): 11-16.
何智, 胡洋, 曲宏韬, 等. 超声冲击电弧增材制造钛合金零件的各向异性研究[J]. 航天制造技术, 2016(6): 11-16.

【19】Qi Y A, Zhao J F, Xie D Q, et al. Fining grain of FGH95 nickel-based superalloy laser cladding layer by ultrasonic impact treatment[J]. Transactions of the China Welding Institution, 2015, 36(3): 59-62.
戚永爱, 赵剑峰, 谢德巧, 等. 超声冲击细化FGH95镍基高温合金激光熔覆层组织[J]. 焊接学报, 2015, 36(3): 59-62.

【20】Pan L, He W, Gu B P. Effects of electric current pulse on dislocation density and residual stresses of 45 carbon steel workpieces[J]. Transactions of Materials and Heat Treatment, 2015, 36(S1): 134-138.
潘龙, 何闻, 顾邦平. 电流脉冲对45碳钢试样位错密度和残余应力的影响[J]. 材料热处理学报, 2015, 36(S1): 134-138.

【21】Wang K Y. Introduction to GB/T—2002《metal-methods for estimating the average grain size》[J]. Machinery Industry Standardization & Quality, 2004(5): 5-8.
王开远. GB/T 6394—2002《金属平均晶粒度测定方法》介绍[J]. 机械工业标准化与质量, 2004(5): 5-8.

【22】Zhou Y G, Cao C X. An investigation of high-temperature deformation strengthening and toughening mechanism of titanium alloy[J]. Acta Metallurgica Sinica, 1999, 35(1): 45-48.
周义刚, 曹春晓. 钛合金高温形变强韧化机理[J]. 金属学报, 1999, 35(1): 45-48.

【23】Stefansson N, Semiatin S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment[J]. Metallurgical and Materials Transactions A, 2003, 34(3): 691-698.

【24】Zeng L, Bieler T R. Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti-6Al-4V wire[J]. Materials Science and Engineering A, 2005, 392(1/2): 403-414.

引用该论文

Zhang Jinzhi,Zhang Anfeng,Wang Hong,Zhang Xiaoxing,Wang Yuyue. Microstructure and Anisotropy of High Performance TC4 Obtained by Micro Forging Laser Cladding Deposition[J]. Chinese Journal of Lasers, 2019, 46(4): 0402009

张金智,张安峰,王宏,张晓星,王豫跃. 微锻造激光熔覆沉积高性能TC4组织与各向异性[J]. 中国激光, 2019, 46(4): 0402009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF