首页 > 论文 > 中国激光 > 46卷 > 4期(pp:404012--1)

基于利特罗式激光反馈光栅干涉的微位移测量技术

Micro-Displacement Measurement Technology Based on Littrow-Configured Laser Feedback Grating Interference

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过在激光反馈干涉(LFI)系统中引入衍射光栅, 提出了一种基于利特罗结构的激光反馈光栅干涉(LFGI)技术, 用于一维和二维精密位移的测量。半导体激光器出射的光束以利特罗条件入射至反射式全息光栅, 衍射光沿入射光方向返回激光腔后, 腔内会发生激光反馈干涉效应。引入正弦相位调制解调技术, 高精度地测量一维和二维微位移。利特罗结构和LFGI系统具有自准直性好、结构紧凑、易于操作和系统稳定性高的优点。实验结果表明, 利特罗式LFGI系统的位移测量精度可以达到10 nm量级。

Abstract

By introducing a diffraction grating into the laser feedback interference(LFI) system, we propose a laser feedback grating interferometry (LFGI) based on Littrow configuration for the measurement of one-dimensional and two-dimensional displacement. The beam emitted from the semiconductor laser is incident onto the reflective holographic grating under the condition of Littrow configuration. After the diffracted light returns to the laser cavity in the direction of the incident light, a laser feedback interference effect occurs in the cavity. The sinusoidal phase modulation and demodulation technique is introduced to obtain the one-dimensional and two-dimensional displacement with high precision. The Littrow configuration and LFGI system have the advantages of great self-collimation, compact structure, easy operation and high stability. The experimental results show that the displacement measurement accuracy of the Littrow LFGI system can reach the order of 10 nm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0404012

所属栏目:测量与计量

基金项目:国家自然科学基金面上项目(51875292)、江苏省高等学校自然科学研究重大项目(17KJA510002)

收稿日期:2018-12-07

修改稿日期:2019-01-09

网络出版日期:2019-01-22

作者单位    点击查看

孔令雯:南京师范大学物理科学与技术学院, 江苏 南京 210023
蔡文魁:南京师范大学物理科学与技术学院, 江苏 南京 210023
施立恒:南京师范大学物理科学与技术学院, 江苏 南京 210023
郭冬梅:南京师范大学物理科学与技术学院, 江苏 南京 210023
夏巍:南京师范大学物理科学与技术学院, 江苏 南京 210023
倪小琦:南京师范大学物理科学与技术学院, 江苏 南京 210023
郝辉:南京师范大学物理科学与技术学院, 江苏 南京 210023
王鸣:南京师范大学物理科学与技术学院, 江苏 南京 210023

联系人作者:郭冬梅(guodongmei@njnu.edu.cn)

【1】Wan X J, Li D, Zhang S L. Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing[J]. Optics Letters, 2007, 32(4): 367-369.

【2】Guo D M, Wang M. Note: Design of a laser feedback interferometer with double diffraction system[J]. Review of Scientific Instruments, 2015, 86(9): 096111.

【3】Huan H, Guo K L, Zhang Y, et al. Phase-extracting method of laser self-mixing interference signal with two feedback external cavity[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061203.
宦海, 郭克伦, 张雨, 等. 两路反馈外腔自混合干涉信号的相位提取方法[J]. 激光与光电子学进展, 2016, 53(6): 061203.

【4】Wang D P, Jin X, Zhou W J, et al. Nonlinear error calibration method for capacitive displacement sensor based on laser interferometry[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101203.
王大鹏, 金星, 周伟静, 等. 基于激光干涉的电容位移传感器非线性误差标定方法[J]. 激光与光电子学进展, 2017, 54(10): 101203.

【5】Lee J Y, Lu M P. Optical heterodyne grating shearing interferometry for long-range positioning applications[J]. Optics Communications, 2011, 284(3): 857-862.

【6】Lee J Y, Jiang G A. Displacement measurement using a wavelength-phase-shifting grating interferometer[J]. Optics Express, 2013, 21(21): 25553-25564.

【7】Shi L, Wang C P, Wang H, et al. A new method based on diffraction grating for ultra-precision displacement detection and positioning[J]. Process Automation Instrumentation, 2017, 38(4): 55-57.
时轮, 王池平, 王鹤, 等. 衍射光栅超精密位移定位检测新方法[J]. 自动化仪表, 2017, 38(4): 55-57.

【8】Guo D M, Shi L H, Yu Y G, et al. Micro-displacement reconstruction using a laser self-mixing grating interferometer with multiple-diffraction[J]. Optics Express, 2017, 25(25): 31394-31406.

【9】Cheng F, Fan K C. Linear diffraction grating interferometer with high alignment tolerance and high accuracy[J]. Applied Optics, 2011,50(22): 4550-4556.

【10】Wang X Y. Research of high-precision displacement measurement system based on the principle of diffraction and interference[D]. Harbin: Harbin Institute of Technology, 2014: 5-25.
王雪英. 基于衍射干涉原理的高精度光栅位移测量系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 5-25.

【11】Chu X C,Lü H B, Zhao S H. Wide-range grating interferometer with nanometer resolution[J]. Opto-Electronic Engineering, 2008, 35(1): 55-59, 115.
楚兴春, 吕海宝, 赵尚弘. 大量程纳米级光栅干涉位移测量[J]. 光电工程, 2008, 35(1): 55-59,115.

【12】Yang D X, Yan S H, Du L B, et al. Design of a miniature single-grating displacement measuring system with nanometer resolution[J]. Infrared and Laser Engineering, 2013, 42(4): 1020-1025.
杨东兴, 颜树华, 杜列波, 等. 一种小型化纳米级单光栅位移测量系统的研制[J]. 红外与激光工程, 2013, 42(4): 1020-1025.

【13】Qiao D. Study on the measurement technology of high precision absolute linear encoder[D]. Beijing: University of Chinese Academy of Sciences, 2015: 10-20.
乔栋. 高精度绝对式光栅尺测量技术研究[D]. 北京: 中国科学院大学, 2015: 10-20.

【14】Qiao D, Xu Z J, Wu H S, et al. A method for compensating interpolation error of absolute linear encoder[J]. Acta Optica Sinica, 2015, 35(1): 0112008.
乔栋, 续志军, 吴宏圣, 等. 绝对式光栅尺细分误差补偿方法[J]. 光学学报, 2015, 35(1): 0112008.

【15】Xia H J. Research on precise 2-D plane grating measurement system and key technology[D]. Hefei: Hefei University of Technology, 2006: 83-100.
夏豪杰. 高精度二维平面光栅测量系统及关键技术研究[D]. 合肥: 合肥工业大学, 2006: 83-100.

【16】Fan K C, Liao B H, Chung Y C, et al. Displacement measurement of planar stage by diffraction planar encoder in nanometer resolution[C]∥2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, May 13-16, 2012, Graz, Austria. New York: IEEE, 2012: 894-897.

【17】Kimura A, Wei G, Arai Y, et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 2010, 34(1): 145-155.

【18】Donati S. Developing self-mixing interferometry for instrumentation and measurements[J]. Laser & Photonics Reviews, 2012, 6(3): 393-417.

【19】Guo D M, Tan S Q, Wang M. Analysis of micro-displacement measurement accuracy in self-mixing interferometer based on sinusoidal phase modulating technique[J]. Acta Optica Sinica, 2006, 26(6): 845-850.
郭冬梅, 谈苏庆, 王鸣. 正弦相位调制自混合干涉微位移测量精度分析[J]. 光学学报, 2006, 26(6): 845-850.

【20】Lee J Y, Hsieh H L, Lerondel G, et al. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement[J]. Applied Optics, 2011, 50(9): 1272-1279.

引用该论文

Kong Lingwen,Cai Wenkui,Shi Liheng,Guo Dongmei,Xia Wei,Ni Xiaoqi,Hao Hui,Wang Ming. Micro-Displacement Measurement Technology Based on Littrow-Configured Laser Feedback Grating Interference[J]. Chinese Journal of Lasers, 2019, 46(4): 0404012

孔令雯,蔡文魁,施立恒,郭冬梅,夏巍,倪小琦,郝辉,王鸣. 基于利特罗式激光反馈光栅干涉的微位移测量技术[J]. 中国激光, 2019, 46(4): 0404012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF