首页 > 论文 > 中国激光 > 46卷 > 4期(pp:401005--1)

低噪声连续单频532 nm/1.06 μm双波长激光器

Low Noise Continuous-Wave Single-Frequency Dual-Wavelength Laser Operating at 532 nm and 1.06 μm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研制出一台全固态低噪声连续单频Nd∶YVO4-LBO双波长激光器, 通过优化三硼酸锂(LBO)的匹配温度, 获得了波长为1.06 μm的激光功率为3.8 W、波长为532 nm的激光功率为7.8 W的连续单频双波长激光输出, 并有效降低双波长激光的强度噪声和相位噪声。实测的1.06 μm和532 nm波长激光的强度噪声均在分析频率大于3.5 MHz时达到散粒噪声极限, 相位噪声均在分析频率大于5 MHz时达到散粒噪声极限。当采用Pound-Drever-Hall锁腔技术锁定激光器的腔长时, 1.06 μm波长激光在1 h内的频率漂移小于±0.8 MHz。实测的1.06 μm和532 nm波长激光在5 h内的功率波动分别小于±0.63%和±0.47%, 光束质量因子分别为1.04和1.12。

Abstract

A kind of all-solid-state Nd∶YVO4-LBO dual-wavelength laser with low noise and continuous wave (CW) single frequency is developed. By optimizing the matching temperature of LBO crystals, a CW single-frequency dual-wavelength laser with 1.06 μm output power of 3.8 W and 532 nm output power of 7.8 W is realized. The intensity and phase noises of this dual-wavelength laser are also reduced. The measured intensity noises of the 1.06 μm and 532 nm lasers reach the shot noise limit (SNL) when the analysis frequency is above 3.5 MHz, and the measured phase noises reach the SNL when the analysis frequency is above 5 MHz. When the Pound-Drever-Hall cavity-locking technique is used for the stabilization of laser cavity length, the frequency drift of 1.06 μm laser is less than ±0.8 MHz. The measured power fluctuations of the 1.06 μm and 532 nm lasers within 5 hours are less than ±0.63% and ±0.47%, and the beam quality factors are 1.04 and 1.12, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201946.0401005

所属栏目:激光器件与激光物理

基金项目:国家重点研发计划(2017YFB0405203)

收稿日期:2019-01-24

修改稿日期:2019-02-05

网络出版日期:2019-02-15

作者单位    点击查看

高英豪:山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006
李渊骥:山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
冯晋霞:山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
张宽收:山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:张宽收(kuanshou@sxu.edu.cn)

【1】Jang Y S, Wang G C, Hyun S, et al. Comb-referenced laser distance interferometer for industrial nanotechnology[J]. Scientific Reports, 2016, 6: 31770.

【2】Huang L. Research of optimization performance and high accuracy measurement technology for single frequency laser interferometer[D]. Changchun: Changchun University of Science and Technology, 2013.
黄雷. 单频激光干涉系统性能优化及高精度测量技术研究[D]. 长春: 长春理工大学, 2013.

【3】Jang Y S, Kim S W. Compensation of the refractive index of air in laser interferometer for distance measurement[J]. International Journal of Precision Engineering andManufacturing, 2017, 18(12): 1881-1890.

【4】Chen H F, Tang L, Shi Z Y, et al. ZEMAX simulation method for laser tracing system based on dual-wavelength method for compensating air refractive index[J]. Chinese Journal of Lasers, 2019, 46(1): 0104009.
陈洪芳, 汤亮, 石照耀, 等. 基于双波长法补偿空气折射率的激光追踪系统ZEMAX仿真方法[J]. 中国激光, 2019, 46(1): 0104009.

【5】Long J X, Li G, Yang B, et al. Progress in injection-seeded all-solid-state single-frequency pulse laser[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090001.
龙江雄, 李刚, 杨彬, 等. 种子注入的全固态单频脉冲激光器研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090001.

【6】Lu J, Ding J Y, He Y, et al. High repetition rate sub-nanosecond dual-wavelength solid-state laser for airborne lidar[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082804.
陆俊, 丁建永, 贺岩, 等. 机载激光雷达用高重复频率亚纳秒双波长全固态激光器[J]. 激光与光电子学进展, 2018, 55(8): 082804.

【7】Lian Y M, Xie C D, Peng K C. Continuous variable multipartite entanglement and optical implementations of quantum communication networks[J]. New Journal of Physics, 2007, 9(9): 314.

【8】Vahlbruch H, Chelkowski S, Danzmann K, et al. Quantum engineering of squeezed states for quantum communication and metrology[J]. New Journal of Physics, 2007, 9(10): 371.

【9】Kang H J, Chun B J, Jang Y S, et al. Real-time compensation of the refractive index of air in distance measurement[J]. Optics Express, 2015, 23(20): 26377-26385.

【10】Fu H J, Wu G L, Hu P C, et al. Highly thermal-stable heterodyne interferometer with minimized periodic nonlinearity[J]. Applied Optics, 2018, 57(6): 1463-1467.

【11】Zhang C W, Lu H D, Yin Q W, et al. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm[J]. Applied Optics, 2014, 53(28): 6371-6374.

【12】Amili A E, Alouini M. Noise reduction in solid-state lasers using a SHG-based buffer reservoir[J]. Optics Letters, 2015, 40(7): 1149-1152.

【13】Jin P X, Lu H D, Su J, et al. Scheme for improving laser stability via feedback control of intracavity nonlinear loss[J]. Applied Optics, 2016, 55(13): 3478-3482.

【14】Zheng Y H, Li F Q, Wang Y J, et al. High-stability single-frequency green laser with a wedge Nd∶YVO4 as a polarizing beam splitter[J]. Optics Communications, 2010, 283(2): 309-312.

【15】Zhang Y, Zhang T C, Li T Y, et al. Phase noise measurement by F-P cavity[J]. Acta Optica Sinica, 2000, 20(4): 465-471.
张云, 张天才, 李廷鱼, 等. 法布里-珀罗腔对相位噪声测量的影响[J]. 光学学报, 2000, 20(4): 465-471.

【16】Ma Y Y, Li Y J, Feng J X, et al. High-power stable continuous-wave single-longitudinal-mode Nd∶YVO4 laser at 1342 nm[J]. Optics Express, 2018, 26(2): 1538-1546.

引用该论文

Gao Yinghao,Li Yuanji,Feng Jinxia,Zhang Kuanshou. Low Noise Continuous-Wave Single-Frequency Dual-Wavelength Laser Operating at 532 nm and 1.06 μm[J]. Chinese Journal of Lasers, 2019, 46(4): 0401005

高英豪,李渊骥,冯晋霞,张宽收. 低噪声连续单频532 nm/1.06 μm双波长激光器[J]. 中国激光, 2019, 46(4): 0401005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF