首页 > 论文 > 红外与激光工程 > 48卷 > 2期(pp:203004--1)

基于一维周期性金属-介质薄膜多波段高效吸收体的制备及其光学特性研究

Fabrication and optical properties of efficient multiband absorbers based on one-dimensional periodic metal-dielectric multilayers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过热蒸发和磁控溅射方法在厚金属Ag反射层上制备了由一维周期性Ag金属薄层和MoO3/SiO2介质层组成的多波段吸收体。实验结果表明: 随着周期数(N)的增加, 吸收峰的个数也相应增加, 且精确等于周期数。对于Ag薄层厚度为14 nm、MoO3层和SiO2层厚度分别为2 nm及135 nm的吸收体, 实验测得在400~900 nm波长范围内的积分吸收效率从N=1时的29.4%增加到N=6时的57.2%, 趋势与理论计算结果一致。此外, 测量结果表明: 吸收峰对入射角度及偏振不敏感。笔者还在柔性聚对苯二甲酸乙二醇酯衬底上制备了多层吸收体, 弯曲1 000次后仍基本保持原有的吸波性能。该吸收体在光伏和热辐射调控等领域具有潜在应用价值。

Abstract

Multiband absorbers comprised of one dimensional periodic Ag metallic thin layer and MoO3/SiO2 dielectric layer on a reflective Ag thick layer were fabricated by thermal evaporation and magnetron sputtering methods. Experimental results show that with the number of unit cell (N) increasing, the number of the absorption peaks increases accordingly and precisely equals N. For our fabricated devices with 14 nm thick Ag layer, 2 nm thick MoO3 layer, and 135 nm thick SiO2 layer, the integrated absorption efficiency over the wavelength range from 400 nm to 900 nm increases from 29.4%when N=1 to 57.2% when N=6, the trend of which is consistent with the calculation results. Moreover, measurements show that the absorption peaks are insensitive to the incident angles and polarizations. The multilayer absorbers were also fabricated on flexible polyethylene terephthalate substrates, which maintained their original absorption performances after bending for 1 000 times. The fabricated absorbers may have potential applications in areas like photovoltaics and thermal emission tailoring.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TB34

DOI:10.3788/irla201948.0203004

所属栏目:特约专栏-"微纳光学专栏"

基金项目:国家自然科学基金 (61475109,61775156,61605136); 山西省自然科学基金(201601D021051, 201701D211002, 201603D421042,201605D131038)

收稿日期:2018-09-10

修改稿日期:2018-10-20

网络出版日期:--

作者单位    点击查看

李 辉:太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
冀 婷:太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
王艳珊:太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
王文艳:太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
郝玉英:太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
崔艳霞:太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024

联系人作者:李辉(1445645246@qq.com)

备注:李辉(1991-),男, 硕士生, 主要从事表面等离激元吸收体方面的研究。

【1】Cui Y. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

【2】Cui Y. Ultra-broadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

【3】Sobhani A. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nat Commun, 2013, 4: 1643.

【4】熊汉. 超材料吸波体的研究进展[C]//全国微波毫米波会议, 2013.

【5】Song Huihui, Zhou Wancheng, Luo Fa, et al. Metamaterial absorber: present status and prospect[J]. Materials Review, 2015, 29(17): 43-46, 72. (in Chinese)
宋荟荟, 周万城, 罗发,等. 超材料吸波体研究进展与展望[J]. 材料导报, 2015, 29(17): 43-46, 72.

【6】Ng C. Black bold: broadband, high absorption of visible light for photochemical systems[J]. Advanced Functional Materials, 2017, 27(2): 1604080.

【7】Dong Zhitao, Wang Qiang, Wang Yan, et al. Review on design methods of meta-material absorbers[J]. Ship Electronic Engineering, 2017, 37(9): 136-141.(in Chinese)
董志涛, 王强, 王岩,等. 超材料吸波体设计方法研究进展[J]. 舰船电子工程, 2017, 37(9): 136-141.

【8】Cattoni A. Lambda(3)/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Lett, 2011, 11(9): 3557-3563.

【9】Molesky S. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics[J]. Optics Express, 2012, 21(1): A96.

【10】Rephaeli E, Fan S. Tungsten black absorber for solar light with wide angular operation range[J]. Applied Physics Letters, 2008, 92(21): 211107.

【11】Shi H. Low density carbon nanotube forest as an index-matched and near perfect absorption coating[J]. Applied Physics Letters, 2011, 99(21): 211103.

【12】Zhou L. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398.

【13】Ye Y Q, Jin Y, He S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Optical Society of America, 2010, 27(3): 498-504.

【14】Cui Y. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101.

【15】Liu X. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Phys Rev Lett, 2011, 107(4): 045901.

【16】Wang W. Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate[J]. Optics Letters, 2014, 39(2): 331.

【17】Kajtár G. Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum[J]. Journal of Physics D Applied Physics, 2016, 49(5): 055104.

【18】Hu E T. High efficient and wide-angle solar absorption with a multilayered metal-dielectric film structure[J]. Vacuum, 2017, 146:194-199.

【19】Jen Y J. Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber[J]. Scientific Reports, 2017, 7(1): 3076.

【20】Deng H. Broadband perfect absorber based on one ultrathin layer of refractory metal[J]. Optics Letters, 2015, 40(11): 2592-2595.

【21】Zhong Y K. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation[J]. Optics Express, 2016, 24(10): A832.

【22】Mukherjee B, Simsek E. Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers[J]. Optics Communications, 2016, 369: 89-93.

【23】Hajian H. Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals[J]. Optics Express, 2017, 25(25): 31970.

【24】Chen W. Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer[J]. Optics Express, 2010, 18: 5124-5134.

【25】Jin H. Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules[J]. Advanced Materials, 2012, 24(19): 2572-2577.

【26】Upama M B. High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode[J]. Current Applied Physics, 2017, 17(2): 298-305.

【27】Makha M. MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor[J]. Applied Physics Letters, 2012, 101(23): 233307.

引用该论文

Li Hui,Ji Ting,Wang Yanshan,Wang Wenyan,Hao Yuying,Cui Yanxia. Fabrication and optical properties of efficient multiband absorbers based on one-dimensional periodic metal-dielectric multilayers[J]. Infrared and Laser Engineering, 2019, 48(2): 0203004

李 辉,冀 婷,王艳珊,王文艳,郝玉英,崔艳霞. 基于一维周期性金属-介质薄膜多波段高效吸收体的制备及其光学特性研究[J]. 红外与激光工程, 2019, 48(2): 0203004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF