首页 > 论文 > 红外与激光工程 > 48卷 > 3期(pp:306001--1)

激光等离子体热核与激波相互作用的流动特性研究

Study on the flow characteristics of interaction of the laser induced plasma hot core and shock wave

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光等离子体热核与正激波相互作用是复杂激光减阻科学问题中最基本的物理现象。建立了基于激波管和激光能量沉积的实验平台, 利用高精度纹影系统捕捉了激光等离子体热核在正激波冲击下的流动结构特性。实验结果表明: 激光等离子体热核界面变形, 弯曲并最终形成双涡环结构, 展向尺寸迅速增大然后降低并逐渐稳定在7.7 mm左右, 流向尺寸先降低然后在激波离开热核之后以114.3 m/s的速度线性增长, 从微观层面进一步揭示了激光减阻机理, 对等离子体主动流动控制的相关研究具有很好的借鉴参考价值。

Abstract

The interaction between laser induced plasma hot core and shock wave was a basic physical phenomenon in the scientific problem of laser induced drag reduction. An experimental platform based on shock tube and laser energy deposition was established, and the high-precision schlieren system was used to capture the flow structure characteristics of laser induced plasma hot core under the normal shock. The experimental results show that the interface of laser induced plasma hot core deforms and bends and finally forms a double vortex ring structure, the width rapidly increases and then decreases and gradually stabilizes at about 7.7 mm, the length decreases first and then linearly increases at a rate of 114.3 m/s after the shock leaves the hot core. The mechanism of laser induced drag reduction was further revealed from the microscopic level, which has good reference value for the related research of plasma induced flow control.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN241;O355

DOI:10.3788/irla201948.0306001

所属栏目:激光技术及应用

基金项目:国家自然科学基金面上项目(11372356)

收稿日期:2018-10-10

修改稿日期:2018-11-20

网络出版日期:--

作者单位    点击查看

王伟东:航天工程大学 激光推进及其应用国家重点实验室, 北京101416
文 明:航天工程大学 激光推进及其应用国家重点实验室, 北京101416
王殿恺:航天工程大学 激光推进及其应用国家重点实验室, 北京101416
李 超:航天工程大学 激光推进及其应用国家重点实验室, 北京101416

联系人作者:王伟东(wwdwwd@mail.ustc.edu.cn)

备注:王伟东(1993-), 男, 硕士生, 主要从事等离子体流动控制方面的研究。

【1】Wright K, Washbum A, Jordan J, et al. Measurement technology for use in active flow control[C]//22th Areodynamic Measurement Technology & Ground Testing Conference, AIAA, 2002: 2705.

【2】Udagawa K, Kawaguchi K, Saito S, et al. Experimental study on supersonic flow control by MHD interaction[C]// 39th Plasmadynamics& Lasers Conference, AIAA, 2008:4222.

【3】Shneider M N, Macheret S O, Zaidi S H, et al. Steady and unsteady supersonic flow control with energy addition[C]// 34th Plasmadynamics and Lasers Conference, AIAA, 2003:3862.

【4】Miles R B, Macheret S O, Shneider M N, et al. Plasma-enhanced hypersonic performance enabled by MHD power extraction[C]//43th Aerospace Sciences Meeting and Exhibit, AIAA, 2005: 0561.

【5】David M. Wie V, Nedungadi A. Plasma aerodynamic flow control for hypersonic inlets[C]//40th Joint Propulsion Conference, AIAA, 2004: 4129.

【6】Kremeyer K, Sebastian K, Shu C W. Computational study of shock mitigation and drag reduction by pulsed energy lines[J]. AIAA Journal, 2006, 44(8): 1720-1731.

【7】Guvernyuk S V, Samoilov A B. Control of supersonic flow around bodies by means of a pulsed heat source[J]. Tech Phys Lett, 1997, 23(5): 333-336.

【8】Oliveira C, Minucci M A, Toro P G, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927.

【9】Hong Junwu, Chen Xiaodong, Zhang Yulun, et al. The primary numerical research of active control technology in flow [J]. Acta Aerodynamica Sinica, 2005, 23(4): 402-407.(in Chinese)

【10】Minucci M A S, Chanes J B, Myrabo L N, et al. Investigation of a laser-supported directed-energy "air spike" in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2003, 40(1): 133-136.

【11】Oliveira A C, Minucci M A S, Toro P G P, et al. Schlieren visualization technique applied to the study of laser-induced breakdown in low density hypersonic flow[C]//Beamed Energy Propulsion: Fourth International Symposium on Beamed Energy Propulsion, AIP Publishing, 2006, 830(1): 504-509.

【12】Oliveira A C, Minucci M A, Myrabo L N, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927.

【13】Sasoh A, Kim J H, Yamashita K, et al. Fly by light power: improvement of supersonic aerodynamic performance with high-repetitive-rate energy depositions: examination of truncated cones[C]//AIAA Paper, 2011: 3999.

【14】Schülein E, Zheltovodov A A, Pimonov E A, et al. Study of the bow shock interaction with laser-pulse-heated air bubbles[C]//AIAA Paper, 2009: 3568.

【15】Ogino Y, Ohnishi N, Taguchi S, et al. Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition[J]. Physics of Fluids, 2009, 21(6): 0661021.

【16】Niederhaus J, Greenough A, Oakley G, et al. Computational parameter study for the three-dimensional shock-bubble interaction[J]. Journal of Fluid Mechanics, 2008, 594: 85-124.

【17】Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body[C]//AIAA Paper, 2009: 3585.

【18】Azarova O A. Supersonic flow control using combined energy deposition[J]. Aerospace, 2015, 2(1): 118-134.

【19】Murphy A. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas[J]. Plasma Chemistry and Plasma Processing, 1995, 15(2): 279-307.

【20】王殿恺. 激光能量控制高超声速波系结构特性研究[D]. 北京: 科学出版社, 2018.

引用该论文

Wang Weidong,Wen Ming,Wang Diankai,Li Chao. Study on the flow characteristics of interaction of the laser induced plasma hot core and shock wave[J]. Infrared and Laser Engineering, 2019, 48(3): 0306001

王伟东,文 明,王殿恺,李 超. 激光等离子体热核与激波相互作用的流动特性研究[J]. 红外与激光工程, 2019, 48(3): 0306001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF