首页 > 论文 > 光学 精密工程 > 27卷 > 1期(pp:137-145)

MEMS热电堆芯片固晶工艺参数的优化

Optimization of die bond process parameters of MEMS thermopile chip

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

MEMS热电堆传感器能够实现对温度的精确测量, 固晶工艺是其中关键一环, 但目前尚缺乏有效方法精确优化MEMS热电堆固晶工艺参数。本文介绍了热电堆传感器的工作原理, 提出了对固晶工艺参数(固晶厚度和爬胶高度)的要求。以固晶工艺要求为导向, 初步探究了压力参数对固晶工艺的影响并进行了压力参数的优化。在优化的压力参数下, 实验探究了点胶高度和贴片高度对固晶工艺的影响, 并缩小了两参数的选择范围。在此基础上, 通过有限元ANSYS软件, 分析在相同温度下, 不同固晶厚度的银浆与芯片接触处的热应力分布, 找出最佳的固晶厚度参数, 并精确优化了点胶高度和贴片高度。最后, 通过实验验证的方式, 对此参数下的MEMS热电堆固晶强度给出了检测结果。结果表明: 压力参数为0.3 MPa、点胶高度为140 μm、贴片高度为460 μm时, 固晶推力均值为43.14 N。其固晶质量最好, 能够满足固晶强度要求, 有助于提高MEMS热电堆芯片封装的可靠性与成品率。

Abstract

The die-bonding process is one of the key steps to ensure accurate temperature measurement by MEMS thermopile sensors. However, there remains no effective method to accurately optimize the process parameters of MEMS thermopile die-bonding. In this paper, the working principle of the thermopile sensor was introduced, and the requirements of the die-bonding process parameters-thickness and fillet height were proposed. Guided by the die-bonding process requirements, the influence of the pressure parameters on the process was initially explored, and the pressure parameters were optimized. Under optimized pressure parameters, the influence of the dispensing height and patch height on the die-bonding process was explored, and the range of choices for the two parameters was narrowed. On this basis, the finite element software package ANSYS was used to analyze the thermal stress distribution of different silver paste and chip thicknesses at the same temperature to determine the optimal die-bonding thickness and accurately optimize the dispensing height and patch height. Finally, through the experimental verification method, the test results were given for the die-bonding strength of MEMS thermopiles under these parameters. The experimental results indicate that when the pressure is 0.3 MPa, the patch height is 460 μm, and the dispensing height is 140 μm, the MEMS thermopile chip achieves average solid crystal thrust of 43.14 N. These parameters ensure the highest quality of the solid crystal, satisfy the die-bonding strength requirements, and help improve the reliability and yield of MEMS thermopile chip packages.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG494;TP24

DOI:10.3788/ope.20192701.0137

所属栏目:微纳技术与精密机械

基金项目:江苏省自然科学基金资助项目(No.BK20171215); 江苏省高等学校自然科学研究重大项目资助(No.17KJA460008)

收稿日期:2018-05-03

修改稿日期:2018-07-16

网络出版日期:--

作者单位    点击查看

陈立国:苏州大学 机电工程学院 江苏省机器人重点实验室&苏州纳米科技协同创新中心, 江苏 苏州 215021
姜勇涛:苏州大学 机电工程学院 江苏省机器人重点实验室&苏州纳米科技协同创新中心, 江苏 苏州 215021
倪灯塔:海军驻贵阳地区航空军事代表室, 贵州 贵阳 550000
王敏锐:苏州工业园区纳米产业技术研究院微纳制造分公司, 江苏 苏州 215021
孙立宁:苏州大学 机电工程学院 江苏省机器人重点实验室&苏州纳米科技协同创新中心, 江苏 苏州 215021

联系人作者:陈立国(chenliguo@suda.edu.cn)

备注:陈立国(1974-), 男, 辽宁葫芦岛人, 博士生导师, 教授。1997年于哈尔滨理工大学获得学士学位, 2003年于哈尔滨工业大学获得博士学位, 主要从事微操作, 微驱动机器人等方面的研究。

【1】佘东生,王晓东,张习文,等. 低温环境下MEMS微构件的动态特性及测试系统[J].光学 精密工程,2010,18(10): 2178-2184.
SHE D SH, WANG X D, ZHANG X W, et al.. Dynamic characteristics and testing system of MEMS micro components under low temperature environment [J]. Opt. Precision Eng., 2010,18(10): 2178-2184. (in Chinese)

【2】邹令敏. 基于MEMS热电堆的表面高温测试技术研究[D].山西太原: 中北大学, 2009.
ZOU L M. Research on surface high temperature testing technology based on MEMS thermopile [D].Taiyuan, Shanxi: North Central University, 2009. (in Chinese)

【3】杨恒昭,熊斌,李铁,等. CMOS工艺兼容的热电堆红外探测器[J].半导体技术,2008,33(9): 759-761.
YANG H ZH, XIONG B, LI T, et al.. CMOS technology compatible thermopile infrared detector [J]. Semiconductor Technology, 2008,33 (9): 759-761. (in Chinese)

【4】林忠华,胡国清,刘文艳,等. 微机电系统的发展及其应用[J].纳米技术与精密工程,2004,2(2): 117-123.
LIN ZH H, HU G Q, LIU W Y, et al.. Development and Application of MEMS [J]. Nanotechnology and Precision Engineering, 2004,2(2): 117-123. (in Chinese)

【5】朱福龙. 基于工艺力学的MEMS封装若干基础问题研究[D].武汉: 华中科技大学, 2007.
ZHU F L. Research on some basic problems of MEMS packaging based on process mechanics [D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)

【6】杨凯骏,王学军,井文丽,等. MEMS器件真空封装工艺研究[J].电子工业专用设备,2010,39(10): 5-7.
YANG K J, WANG X J, JING W L, et al.. Research on vacuum packaging process of MEMS devices [J].Special Equipment for Electronic Industry, 2010, 39(10): 5-7. (in Chinese)

【7】王会强,郝丽娜,郝晓剑,等. MEMS热电堆高温测试系统中的MEMS传感器动态性能测试[J].计量与测试技术,2010, 37(5): 44-46.
WANG H Q, HAO L N, HAO X J, et al.. The dynamic performance test of MEMS sensor in the high temperature test system of MEMS thermoelectric reactor [J]. Measurement and Testing Technology, 2010, 37(5): 44-46. (in Chinese)

【8】SCHIEFERDECKER J, QUAD R, HOLZENKAMPFER E, et al.. Infrared thermopile sensors with high sensitivity and very low temperature coefficient [J]. Sensors and Actuators A: Physical, 1995, 47(1): 422-427.

【9】熊志武,李文龙.RFID设备点胶高度补偿算法研究实现[J].制造业自动化,2013,35(8): 33-37.
XIONG ZH W, LI W L. Research and implementation of the height compensation algorithm for RFID equipment [J]. Manufacturing Automation, 2013, 35(8): 33-37. (in Chinese)

【10】张青青.微小器件精密点胶控制与设备研制[D].大连: 大连理工大学, 2017.
ZHANG Q Q. Precision dispensing control and equipment development of Micro Devices [D].Dalian : Dalian University of Technology, 2017. (in Chinese)

【11】宣翔,宋夏,林文海.砷化镓裸芯片环氧导电胶自动贴片技术[J].电子工艺技术,2016,37(4): 198-200.
XUAN X, SONG X, LIN W H. GaAs Nude Chip Epoxy conductive adhesive automatic patch technology [J]. Electronic Technology, 2016, 37 (4): 198-200. (in Chinese)

引用该论文

CHEN Li-guo,JIANG Yong-tao,NI Deng-ta,WANG Min-rui,SUN Li-ning. Optimization of die bond process parameters of MEMS thermopile chip[J]. Optics and Precision Engineering, 2019, 27(1): 137-145

陈立国,姜勇涛,倪灯塔,王敏锐,孙立宁. MEMS热电堆芯片固晶工艺参数的优化[J]. 光学 精密工程, 2019, 27(1): 137-145

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF