首页 > 论文 > Photonic Sensors > 9卷 > 2期(pp:179-188)

Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Infrared small target detection is a significant and challenging topic for daily security. This paper proposes a novel model to detect LSS-target (low altitude, slow speed, and small target) under the complicated background. Firstly, the fundamental constituents of an infrared image including the complexity and entropy are calculated, which are invoked as adaptive control parameters of smoothness. Secondly, the adaptive L0 gradient minimization smoothing based on texture complexity and information entropy (TCAIE-LGM) is proposed in order to remove noises and suppress low-amplitude details in infrared image abstraction. Finally, difference of Gaussian (DoG) map is incorporated into the pixel-based adaptive segmentation (PBAS) background modeling algorithm, which can differ LSS-target from the sophisticated background. Experimental results demonstrate that the proposed novel model has a high detection rate and produces fewer false alarms, which outperforms most state-of-the-art methods.

中国激光微信矩阵
补充资料

DOI:10.1007/s13320-018-0523-8

所属栏目:Regular

基金项目:supported by the National Natural Science Foundation of China (Grant No. 61602432).

收稿日期:2018-08-15

修改稿日期:2018-10-04

网络出版日期:--

作者单位    点击查看

Yanfeng WU:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Yanjie WANG:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Peixun LIU:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Huiyuan LUO:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Boyang CHENG:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Haijiang SUN:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

联系人作者:Haijiang SUN(sunhaijiang@126.com)

【1】J. Hu, Y. Yu, and F. Liu, “Small and dim target detection by background estimation,” Infrared Physics & Technology, 2015, 73: 141.148.

【2】W. P. Yang, X. P. Lu, J. C. Li, and Z. L. Zhang, “Fast algorithm of infrared small target detection in jitter background,” SPIE, 2015, 9476: 947614-1.947614-6.

【3】H. Deng, J. G. Liu, and Z. Chen, “Infrared small target detection based on modified local entropy and EMD,” Chinese Optics Letters, 2010, 8(1): 24.28.

【4】E. Abdelkawy and D. Mcgaughy, “Small infrared target detection using two-dimensional fast orthogonal search (2D-FOS),” SPIE, 2003, 5094: 179.185.

【5】T. Xie, Z. Chen, and R. Y. Ma, “A novel method for infrared small target detection based on PGF, BEMD and LIE,” Journal of Infrared & Millimeter Waves, 2017, 36(1): 92.101.

【6】D. Y. Huang, A. K. Xue, and Y. F. Guo, “Penalty dynamic programming algorithm for dim targets detection in sensor systems,” Sensors, 2012, 12(4): 5028.5046.

【7】J. L. Gao, C. L. Wen, and M. Q. Liu, “Robust small target Co-detection from airborne infrared image sequences,” Sensors, 2017, 17(10): 2242-1.2242-21.

【8】Z. Z. Li, J. Chen, Q. Hou, H. X. Fu, Z. Dai, R. Z. Li, et al., “Sparse representation for infrared dim target detection via a discriminative over-complete dictionary learned online,” Sensors, 2014, 14(6): 9451.9470.

【9】S. Kim, “Sea-based infrared scene interpretation by background type classification and coastal region detection for small target detection,” Sensors, 2015, 15(9): 24487.24513.

【10】S. Kim and J. Lee, “Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track,” Sensors, 2014, 14(7): 13210.13242.

【11】X. Z. Bai and F. G. Zhou, “Analysis of new top-hat transformation and the application for infrared dim small target detection,” Pattern Recognition, 2010, 43(6): 2145.2156.

【12】P. Wang, J. W. Tian, and C. Q. Gao, “Infrared small target detection using directional highpass filters based on LS-SVM,” Electronics Letters, 2009, 45(3): 156.158.

【13】E. Guariglia, “Entropy and fractal antennas,” Entropy, 2016, 18(3): 1.17.

【14】I. S. Reed, R. M. Gagliardi, and L. B. Stotts, “Optical moving target detection with 3-D matched filtering,” IEEE Transactions on Aerospace & Electronic Systems, 2002, 24(4): 327.336.

【15】X. M. Shen and L. Deng, “Game theory approach to discrete H, filter design,” Signal Processing IEEE Transactions, 1997, 45(4): 1092.1095.

【16】V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, 1997, 22(1): 61.79.

【17】Z. J. Liu, C. Y. Chen, and X. B. Shen, “Detection of small objects in image data based on the nonlinear principal component analysis neural network,” Optical Engineering, 2005, 44(9): 093604-1-093604-9.

【18】C. Yao and W. Chen, “Research on infrared dim and small target detection based on improved particle algorithm,” Progress in Laser and Optoelectronics, 2017(11): 143.148.

【19】J. Liu and H. Ji, “Infrared dim and small target detection based on mobile weighted pipeline filtering,” Journal of Xi''an Electronic and Science University (NATURAL SCIENCE EDITION), 2007, 34(5): 743.747.

【20】Y. Huang, X. F. Zhang, and Y. U. Xin, “Pipeline filtering detection method for photon imaging stationary point target,” Chinese Optics, 2013, 6(1): 73.79.

【21】H. S. Nie, Z. J. Huang, J. T. Diao, J. Chen, H. J. Liu, and Q. Li, “A Wiener filter based infrared small target detecting and tracking method,” in Proceeding of International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010, pp. 184.187.

【22】Y. F. Wu, H. J. Sun, and P. X. Liu, “A novel fast detection method of infrared LSS-Target in complex urban background,” International Journal of Wavelets Multiresolution & Information Processing, 2018, 16(01): 1619.1632.

【23】D. A. Scribner, K. A. Sarkady, and M. R. Kruer, “Adaptive retina-like preprocessing for imaging detector arrays,” Proceeding of IEEE International Conference on Neural Networks, 1993(3): 1955.1960.

【24】D. A. Scribner and J. T. Caulfield, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Proceedings of SPIE: The International Society for Optical Engineering, San Francisco, CA, USA, 1990, pp. 224.233.

【25】J. G. Harris, “Nonuniformity correction of infrared image sequences using the constant-statistics constraint,” Image Processing IEEE Transactions, 1999, 8(8): 1148.1151.

【26】H. L. Qin, S. Q. Liu, H. X. Zhou, and R. Lai, “Nonuniformity correction algorithm based on wavelet transform for infrared focal plane arrays,” Acta Optica Sinica, 2007, 7(9): 1617.1620.

【27】L. Xu, C. W. Lu, Y. Xu, and J. Y. Jia, “Image smoothing via L0 gradient minimization,” ACM Transactions on Graphics, 2011, 30(6): 1.12.

【28】C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, 1948: 27(3): 379.423.

【29】M. Hofmann, P. Tiefenbacher, and G. Rigoll, “Background segmentation with feedback: the pixel-based adaptive segmenter,” in Proceeding of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 2012, pp. 38.43.

【30】O. Barnich and M. V. Droogenbroeck, “ViBe: a universal background subtraction algorithm for video sequences,” IEEE Transactions on Image Processing, 2011, 20(6): 1709.1724.

【31】Sadarangani and Nikhil, “An improved Gaussian mixture model algorithm for background subtraction,” Massachusetts Institute of Technology, 2002, pp. 1.72.

【32】A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” Proc. of the IEEE, 2002, 90(7): 1151.1163.

【33】C. Y. Wang and S. Y. Qin, “Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis,” Infrared Physics & Technology, 2015, 69: 123.135.

引用该论文

Yanfeng WU,Yanjie WANG,Peixun LIU,Huiyuan LUO,Boyang CHENG,Haijiang SUN. Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction[J]. Photonic Sensors, 2019, 9(2): 179-188

Yanfeng WU,Yanjie WANG,Peixun LIU,Huiyuan LUO,Boyang CHENG,Haijiang SUN. Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction[J]. Photonic Sensors, 2019, 9(2): 179-188

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF