光电子快报(英文版), 2019, 15 (1): 43, Published Online: Apr. 11, 2019   

Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid

Author Affiliations
1 Institute of Lightwave Technology, School of Information Science and Technology, Xiamen University, Xiamen 361005, China
2 Joint Research Laboratory of Optics of Zhejiang Normal University and Zhejiang University, Hangzhou 310058, China
Abstract
In this paper, magnetic fluid (MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode (MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers (MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiber-optic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT, which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.

LEI Xue-qin, XU Yan-chao, YU Ya-ting, PENG Bao-jin. Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid[J]. 光电子快报(英文版), 2019, 15(1): 43.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!