首页 > 论文 > Photonics Research > 7卷 > 4期(pp:457-463)

Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

All-dielectric metamaterials have emerged as a promising platform for low-loss and highly efficient terahertz devices. However, existing fabrication methods have difficulty in achieving a good balance between precision and cost. Here, inspired by the nano-template-assisted self-assembly method, we develop a micro-template-assisted self-assembly (MTAS) method to prepare large-scale, high-precision, and flexible ceramic microsphere all-dielectric metamaterials with an area exceeding 900 cm×900 cm. Free from organic solvents, vacuum, and complex equipment, the MTAS method ensures low-cost and environmentally friendly fabrication. The ceramic microsphere resonators can be readily assembled into nearly arbitrary arrangements and complex aggregates, such as dimers, trimers, quadrumers, and chains. Finally, using the heat-shrinkable substrate and dipole coupling effect, a broadband reflector with a bandwidth of 0.15 THz and a reflection of up to 95% is demonstrated. This work provides a versatile and powerful platform for terahertz all-dielectric metamaterials, with potential to be applied in a wide variety of high-efficiency terahertz devices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.7.000457

所属栏目:Plasmonics and Metamaterials

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61774020, 51502179); Department of Education of Hebei Province10.13039/501100003482 (QN2016156); Natural Science Foundation of Hebei Province10.13039/501100003787 (E2017210096); Fund of IPOC Beijing University of Posts and Telecommunications (BUPT)10.13039/501100002766 (IPOC2017ZT06); Fundamental Research Funds for the Central Universities (2018XKJC05); General Financial Grant from the China Postdoctoral Science Foundation10.13039/501100002858 (2017M620693).

收稿日期:2018-11-30

录用日期:2019-02-06

网络出版日期:2019-04-11

作者单位    点击查看

Ke Bi:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Daquan Yang:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Jia Chen:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Qingmin Wang:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Hongya Wu:School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Chuwen Lan:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Yuping Yang:School of Science, Minzu University of China, Beijing 100081, China

联系人作者:Chuwen Lan(lanchuwen@bupt.edu.cn)

【1】P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7 , 791–795 (2013).

【2】J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, and P. G. Clem, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108 , 097402 (2012).

【3】A. S. Shorokhov, E. V. Melikgaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, and A. A. Fedyanin, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16 , 4857–4861 (2016).

【4】P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photon. 1 , 524–529 (2014).

【5】M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melikgaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14 , 6488–6492 (2014).

【6】I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, and I. Brener, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7 , 7824–7832 (2013).

【7】Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9 , 412–418 (2015).

【8】M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15 , 6261–6266 (2015).

【9】F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347 , 1342–1345 (2015).

【10】R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113 , 10473–10478 (2016).

【11】F. Capasso, F. Aieta, M. Khorasaninejad, P. Genevet, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4 , 139–152 (2017).

【12】K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, and I. Brener, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3 , 514–519 (2016).

【13】Y. Yang, I. I. Kravchenko, D. Briggs, and J. Valentine, “Dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5 , 5753 (2014).

【14】E. Semouchkina, R. Duan, G. Semouchkin, and R. Pandey, “Sensing based on Fano-type resonance response of all-dielectric metamaterials,” Sensors 15 , 9344–9359 (2015).

【15】Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 20 , 47–50 (2015).

【16】P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2 , 692–698 (2015).

【17】P. Moitra, B. A. Slovick, Z. Gang Yu, and S. Krishnamurthy, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104 , 171102 (2014).

【18】B. Slovick, Z. G. Yu, and M. Berding, and KrishnamurthyS., “Perfect dielectric-metamaterial reflector,” Phys. Rev. B 88 , 5514–5518 (2013).

【19】C. Y. Yang, J. H. Yang, Z. Y. Yang, Z. X. Zhou, M. G. Sun, V. E. Babicheva, and K. P. Chen, “Nonradiating silicon nanoantenna metasurfaces as narrow-band absorbers,” ACS Photon. 5 , 2596–2601 (2018).

【20】H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3 , 148–151 (2009).

【21】M. Choi, S. H. Lee, Y. Kim, S. B. SKang, J. Shim, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470 , 369–373 (2011).

【22】H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444 , 597–600 (2006).

【23】S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80 , 153103 (2009).

【24】R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19 , 6312–6319 (2011).

【25】T. Hu, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber,” Phys. Rev. B 78 , 1879–1882 (2008).

【26】L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4 , e324 (2015).

【27】L. Liu, X. Zhang, K. Mitchell, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26 , 5031–5036 (2014).

【28】X. Zhang, Z. Tian, W. Yu, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25 , 4567–4572 (2013).

【29】H. Xu, K. Bi, Y. Hao, J. Zhang, J. Xu, J. Dai, K. Xu, and J. Zhou, “Switchable complementary diamond-ring-shaped metasurface for radome application,” IEEE Antennas Wireless Propag. Lett. 17 , 2494–2497 (2018).

【30】X. Wang, Y. Cui, T. Li, M. Lei, J. Li, and Z. Wei, “Recent advances in the functional 2D photonic and optoelectronic devices,” Adv. Opt. Mater. 7 , 1801274 (2018).

【31】Q. Wang, X. Li, L. Wu, P. Lu, and Z. Di, “Electronic and interface properties in graphene oxide/hydrogen-passivated Ge heterostructure,” Phys. Status Solidi (RRL) 13 , 1800461 (2019).

【32】Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106 , 111106 (2015).

【33】H. Němec, P. Ku el, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79 , 241108 (2009).

【34】I. V. Shadrivov, K. Fan, W. J. Padilla, and X. Liu, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25 , 191–201 (2017).

【35】C. Ouyang, C. Hu, H. Zhang, J. Han, J. Gu, M. Wei, Q. Wang, Q. Xu, W. Zhang, and X. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6 , 24–29 (2017).

【36】Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photon. 3 , 1010–1018 (2016).

【37】D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27 , 7137–7144 (2015).

【38】H. Němec, C. Kadlec, F. Kadlec, P. Ku el, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100 , 061117 (2012).

【39】J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12 , 5318–5324 (2012).

【40】J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Experimental realization of Mie-resonance terahertz absorber by self-assembly method,” Opt. Express 26 , 13001–13011 (2018).

【41】M. Walther, A. Ortner, H. Meier, U. Loffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95 , 251107 (2009).

【42】K. Takano, T. Kawabata, C. F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R. P. Pan, C. L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3 , 016701 (2010).

【43】M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters,” J. Opt. Soc. Am. B 27 , 1083–1091 (2010).

【44】M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6 , 7915 (2015).

【45】J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6 , 7042 (2015).

【46】B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alu, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photon. 2 , 724–729 (2015).

【47】J. Sun, L. Kang, R. Wang, L. Liu, L. Sun, and J. Zhou, “Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays,” New J. Phys. 12 , 083020 (2010).

【48】G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao, X. Zheng, and Y. Zhang, “Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose,” Adv. Sci. 3 , 1500257 (2016).

【49】K. Bi, M. Bi, Y. Hao, W. Luo, W. Cai, X. Wang, and Y. Huang, “Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density,” Nano Energy 51 , 513–523 (2018).

引用该论文

Ke Bi, Daquan Yang, Jia Chen, Qingmin Wang, Hongya Wu, Chuwen Lan, and Yuping Yang, "Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials," Photonics Research 7(4), 457-463 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF