首页 > 论文 > Photonics Research > 7卷 > 4期(pp:464-472)

Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Open quantum and wave systems can exhibit non-Hermitian degeneracies called exceptional points, where both the eigenvalues and the corresponding eigenstates coalesce. Previously, such exceptional points have been investigated in dielectric microcavities in terms of optical modes which are well confined inside the cavity. However, beside these so-called “internal modes” with a relatively high quality factor, there exists another kind of mode called “external modes,” which have a large decay rate and almost zero intensity inside the cavity. In the present paper, we demonstrate the physical significance of the external modes via the occurrence of exceptional points of internal–external mode pairs for transverse electric polarization. Our numerical studies show that these exceptional points can be achieved by either a boundary deformation of the microdisk or by introducing absorption into a circular cavity.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.7.000464

所属栏目:Optical Devices

基金项目:Deutsche Forschungsgemeinschaft (DFG)10.13039/501100001659 (Emmy Noether Programme, WI1986/7-1).

收稿日期:2019-01-22

录用日期:2019-02-19

网络出版日期:2019-04-11

作者单位    点击查看

Chang-Hwan Yi:Institut für Physik, Otto-von-Guericke-Universit?t Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
Julius Kullig:Institut für Physik, Otto-von-Guericke-Universit?t Magdeburg, Postfach 4120, D-39016 Magdeburg, GermanyInstitut für Physik, Technische Universit?t Ilmenau, D-98693 Ilmenau, Germany
Martina Hentschel:Institut für Physik, Technische Universit?t Ilmenau, D-98693 Ilmenau, Germany
Jan Wiersig:Institut für Physik, Otto-von-Guericke-Universit?t Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany

联系人作者:Jan Wiersig(jan.wiersig@ovgu.de)

【1】T. Kato, Perturbation Theory for Linear Operators (Springer, 1966).

【2】W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E 61 , 929–932 (2000).

【3】M. V. Berry, “Physics of nonhermitian degeneracies,” Czech. J. Phys. 54 , 1039–1047 (2004).

【4】H. Cartarius, J. Main, and G. Wunner, “Exceptional points in atomic spectra,” Phys. Rev. Lett. 99 , 173003 (2007).

【5】B. Alfassi, O. Peleg, N. Moiseyev, and M. Segev, “Diverging Rabi oscillations in subwavelength photonic lattices,” Phys. Rev. Lett. 106 , 073901 (2011).

【6】M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108 , 173901 (2012).

【7】M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Sch berl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional points,” Nat. Commun. 5 , 4034 (2014).

【8】C. Dembowski, H.-D. Gr f, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86 , 787–790 (2001).

【9】J. Doppler, A. A. Mailybaev, J. B hm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, “Dynamically encircling an exceptional point for asymmetric mode switching,” Nature 537 , 76–79 (2016).

【10】C. Dembowski, B. Dietz, H.-D. Gr f, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90 , 034101 (2003).

【11】B. Peng, . K. zdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Nat. Acad. Sci. USA 113 , 6845–6850 (2016).

【12】S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103 , 134101 (2009).

【13】J. Zhu, . K. zdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18 , 23535–23543 (2010).

【14】S. Richter, T. Michalsky, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Exceptional points in anisotropic planar microcavities,” Phys. Rev. A 95 , 023836 (2017).

【15】N. Zhang, S. Liu, K. Wang, G. Z. L. Meng, N. Yi, S. Xiao, and Q. H. Song, “Single nanoparticle detection using far-field emission of photonic molecule around an exceptional point,” Sci. Rep. 5 , 11912 (2015).

【16】J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112 , 203901 (2014).

【17】J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93 , 033809 (2016).

【18】W. Chen, . K. zdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548 , 192–196 (2017).

【19】H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548 , 187–191 (2017).

【20】H. Cao, and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87 , 61–111 (2015).

【21】J.-W. Ryu, and S.-Y. Lee, “Quasiscarred modes and their branching behaviour at an exceptional point,” Phys. Rev. E 83 , 015203(R) (2011).

【22】J. Kullig, and J. Wiersig, “Perturbation theory for asymmetric deformed microdisk cavities,” Phys. Rev. A 94 , 043850 (2016).

【23】C.-H. Yi, J. Kullig, and J. Wiersig, “Pair of exceptional points in a microdisk cavity under an extremely weak deformation,” Phys. Rev. Lett. 120 , 093902 (2018).

【24】T. Harayama, and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5 , 247–271 (2011).

【25】J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84 , 063828 (2011).

【26】R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, and C. Schmit, “Circular dielectric cavity and its deformations,” Phys. Rev. A 77 , 013804 (2008).

【27】E. Bogomolny, R. Dubertrand, and C. Schmit, “Trace formula for dielectric cavities: general properties,” Phys. Rev. E 78 , 056202 (2008).

【28】C. P. Dettmann, G. V. Morozov, M. Sieber, and H. Waalkens, “Internal and external resonances of dielectric disks,” Euro. Lett. 87 , 34003 (2009).

【29】J. Cho, I. Kim, S. Rim, G.-S. Yim, and C.-M. Kim, “Outer resonances and effective potential analogy in two-dimensional dielectric cavities,” Phys. Lett. A 374 , 1893–1899 (2010).

【30】J. Cho, S. Rim, and C.-M. Kim, “Dynamics of morphology-dependent resonances by openness in dielectric disks for TE polarization,” Phys. Rev. A 83 , 043810 (2011).

【31】G. R. Fowles, Introduction to Modern Optics (Courier Corporation, 1975).

【32】E. Bogomolny, and R. Dubertrand, “Trace formula for dielectric cavities. III. TE modes,” Phys. Rev. E 86 , 026202 (2012).

【33】M. Hentschel, and H. Schomerus, “Fresnel laws at curved dielectric interfaces of microresonators,” Phys. Rev. E 65 , 045603(R) (2002).

【34】Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104 , 153601 (2010).

【35】S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12 , 1175–1182 (2006).

【36】J. Kullig, and J. Wiersig, “Q spoiling in deformed optical microdisks due to resonance-assisted tunneling,” Phys. Rev. E 94 , 022202 (2016).

【37】J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5 , 53–60 (2003).

【38】J. Wiersig, “Perturbative approach to optical microdisks with a local boundary deformation,” Phys. Rev. A 85 , 063838 (2012).

【39】J. W. Brown, and R. V. Churchill, Complex Variables and Applications (McGraw-Hill Higher Education, 2009).

【40】D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60 , 754–767 (1986).

【41】S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyPy-1,” J. Appl. Phys. 66 , 6030–6040 (1989).

【42】S. Bittner, B. Dietz, M. Miski-Oglu, P. O. Iriarte, A. Richter, and F. Sch fer, “Experimental test of a two-dimensional approximation for dielectric microcavities,” Phys. Rev. A 80 , 023825 (2009).

【43】M. Lebental, C. Djellali, N. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, and E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76 , 023830 (2007).

【44】M. Benyoucef, J.-B. Shim, J. Wiersig, and O. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett. 36 , 1317–1319 (2011).

【45】F. Vollmer, and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1 , 267–291 (2012).

【46】B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26 , 113–122 (1990).

引用该论文

Chang-Hwan Yi, Julius Kullig, Martina Hentschel, and Jan Wiersig, "Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks," Photonics Research 7(4), 464-472 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF