首页 > 论文 > 半导体光电 > 40卷 > 2期(pp:220-225)

基于H形金属狭缝阵列结构双共振谷折射率传感特性

Refractive Index Sensing Property of Two Resonance Dips Based on HShaped Metal Slit Array Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于H形金属狭缝阵列的新型结构。利用该结构形成的法布里珀罗腔(FabryPerot, FP)来加强表面等离激元的耦合作用, 以获得一种双共振反射现象; 同时研究了基于该现象的折射率传感特性。采用时域有限差分法研究了该结构中狭缝长度、宽度、金膜厚度等参数对双共振反射现象的影响。研究发现, 双共振谷波长可由以上主要参数有效调控, 当竖直狭缝长度为150nm、水平狭缝长度为200nm、狭缝宽度为50nm、金膜厚度为300nm时, 该结构具有较好的双共振反射现象, 其灵敏度分别为590和1199nm/RIU。该发现为新一代高性能表面等离子共振传感器设计提供了理论参考。

Abstract

A novel structure based on Hshaped metal slits array is proposed in this paper. The FabryPerot cavity formed by the structure is used to strengthen the coupling effect of the surface plasmon polariton to obtain a phenomenon of two resonance reflections. And also the refractive index sensing characteristics based on this phenomenon were studied. The influence of length and width of slit and thickness of gold film on the tworesonance reflection was studied with the method of finite difference time domain. It is found that the wavelengths of the two resonance dips can be effectively controlled by the above parameters. When the length of the vertical slits is 150nm, the length of the horizontal slit is 200nm, the width of the slits is 50nm, and the thickness of the gold film is 300nm, the structure has a good phenomenon of two resonance reflections, and its sensitivity is 590 and 1199nm/RIU, respectively. The discovery can provide a theoretical reference for the design of a new generation of highperformance surface plasmon resonance sensors.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN252

DOI:10.16818/j.issn1001-5868.2019.02.015

所属栏目:材料、结构及工艺

基金项目:国家自然科学基金项目(61465004, 61765004); 广西自然科学基金项目(2017GXNSFAA198164, 2016GXNSFAA380006); 桂林电子科技大学研究生教育创新计划项目(2017YJCX41); 广西精密导航技术与应用重点实验室项目(DH201804, DH201703)

收稿日期:2018-09-25

修改稿日期:--

网络出版日期:--

作者单位    点击查看

肖功利:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室2. 广西信息科技实验中心
韦清臣:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
杨宏艳:桂林电子科技大学 电子工程与自动化学院, 广西 桂林 541004
徐俊林:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
杨秀华:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
窦婉滢:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
李海鸥:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
陈永和:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
傅 涛:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
李 琦:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室

联系人作者:肖功利(xgl.hy@126.com)

备注:肖功利(1975-), 男, 博士, 副教授, 硕士生导师, 主要从事微纳光电子器件与表面等离激元方面的研究。

【1】Cetin A E, Coskun A F, Galarreta B C, et al. Handheld highthroughput plasmonic biosensor using computational onchip imaging[J]. Light Science & Appl., 2014, 3(1): e122.

【2】Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nature Mater., 2009, 8(11): 867871.

【3】Maurya J B, Prajapati Y K. Influence of dielectric coating on performance of surface plasmon resonance sensor[J]. Plasmonics, 2017, 12(4): 11211130.

【4】Pang Y, Gordon R. Optical trapping of a single protein[J]. Nano Lett., 2012, 12(1): 402406.

【5】孙博书, 黄子昊, 王晓萍, 等. 偏振控制光强调制型点阵SPR传感器研究[J]. 光学学报, 2011, 31(3): 3120031.
Sun Boshu, Huang Zihao, Wang Xiaoping, et al. Intensitymodulated surface plasmon resonance array sensor based on polarization control[J]. Acta Opt. Sin., 2011, 31(3): 3120031.

【6】Feng L H, Zeng J, Liang D K, et al. Development of fiberoptic surface plasmon resonance sensor based on tapered structure probe[J]. Acta Opt. Sin., 2013, 62(12): 124207.

【7】Jorgenson R C, Yee S S. A fiber optic chemical sensorbased on surfaceplasmon resonance[J]. Sensors and Actuators BChem., 1993, 12(3): 213220.

【8】Lu M, Liang Y, Qian S, et al. Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiberoptic miniaturization[J]. Plasmonics, 2017, 12(3): 663673.

【9】Wang S F, Chiu M H, Chang R S. Numerical simulation of a Dtype optical fiber sensor based on the Kretchmanns configuration and heterodyne interferometry[J]. Sensors and Actuators BChem., 2006, 114(1): 120126.

【10】陈小龙, 罗云瀚, 徐梦云, 等. 基于侧边抛磨光纤表面等离子体共振的折射率和温度传感研究[J]. 光学学报, 2014, 34(2): 2060051.
Chen Xiaolong, Luo Yunhan, Xu Mengyun, et al. Intensitymodulated surface plasmon resonance array sensor based on polarization control[J]. Acta Opt. Sin., 2014, 34(2): 2060051.

【11】Huy N, Sidiroglou F, Collins S F, et al. Periodic array of nanoholes on goldcoated optical fiber endfaces for surface plasmon resonance liquid refractive index sensing[C]// Proc. of Third Asia Pacific Opt. Sensors Conf., 2012, 8351: 835128.

【12】Jia P, Yang J. Integration of largearea metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing[J]. Appl. Phys. Lett., 2013, 102: 243107.

【13】Jia P, Yang J. A plasmonic optical fiber patterned by template transfer as a highperformance flexible nanoprobe for realtime biosensing[J]. Nanoscale, 2014, 6(15): 88368843.

【14】Lin Y, Zou Y, Mo Y, et al. Ebeam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing[J]. Sensors, 2010, 10(10): 93979406.

【15】施伟华, 吴 静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 2060021.
Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Opt. Sin., 2015, 35(2): 2060021.

【16】Wu L, Bai P, Zhou X, et al. Reflection and transmission modes in nanoholearraybased plasmonic sensors[J]. IEEE Photon. J., 2012, 4(1): 2633.

【17】Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chem. Rev., 2008, 108(2): 462493.

【18】Dhawan A, Gerhold M D, Muth J F. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications[J]. IEEE Sensors J., 2008, 8(5/6): 942950.

【19】Nguyen H, Baxter G W, Collins S F, et al. Modeling of gold circular subwavelength apertures on a fiber endface for refractive index sensing[J]. Photon. Sensors, 2012, 2(3): 271276.

【20】Jia P, Jiang H, Sabarinathan J, et al. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance[J]. Nanotechnol., 2013, 24: 195501.

【21】Yi Z, Liu M, Luo J, et al. Multiple surface plasmon resonances of square lattice nanohole arrays in AuSiO2Au multilayer films[J]. Opt. Commun., 2017, 390: 16.

引用该论文

XIAO Gongli,WEI Qingchen,YANG Hongyan,XU Junlin,YANG Xiuhua,DOU Wanying,LI Haiou,CHEN Yonghe,FU Tao,LI Qi. Refractive Index Sensing Property of Two Resonance Dips Based on HShaped Metal Slit Array Structure[J]. Semiconductor Optoelectronics, 2019, 40(2): 220-225

肖功利,韦清臣,杨宏艳,徐俊林,杨秀华,窦婉滢,李海鸥,陈永和,傅 涛,李 琦. 基于H形金属狭缝阵列结构双共振谷折射率传感特性[J]. 半导体光电, 2019, 40(2): 220-225

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF