首页 > 论文 > 光学学报 > 39卷 > 5期(pp:504002--1)

基于液相外延的InAs基红外探测器InAsSbP阻挡层的仿真

Modeling of InAsSbP Blocking Barrier Grown by Liquid-Phase Epitaxy in InAs-Based Infrared Photodetector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在传统pn结红外探测器中, 宽带隙阻挡层的引入可以有效降低器件暗电流。采用COMSOL软件对探测器的能带图进行仿真, 结果表明, InAsSbP四元合金通过n型或p型掺杂, 其能带结构能够实现价带能级的下凹或导带能级的上凸, 起到阻挡空穴或电子的作用。通过理论分析和仿真计算, 确定了满足阻挡层要求的InAsSbP组分。对于nBip型和pBin型红外探测器, 仿真得到了阻挡层的最优厚度和最优掺杂浓度(粒子数浓度), 并分析了其偏离最优值时对器件暗电流的影响。对于nBip型探测器, 当阻挡层厚度为40 nm、掺杂浓度为2×1018 cm-3时, 器件开关比最大; 对于pBin型探测器, 当阻挡层厚度为60 nm、掺杂浓度为4×1017 cm-3时, 器件的开关比最大。

Abstract

Introducing a blocking barrier with a wide bandgap can effectively lower the dark current of a traditional pn-junction infrared photodetector. The energy band diagrams of detectors are obtained by simulation using COMSOL software, and the simulation denotes that n- or p-type doping of the InAsSbP quaternary alloy sinks the valence band and lifts the conduction band in its energy map, thereby blocking holes or electrons. Through the theoretical analysis and simulation calculations, the compositions of InAsSbP necessary to satisfy the requirements of the blocking barrier are determined. The optimal values of the blocking-barrier thickness and doping concentration (particle-number concentration) are provided for the nBip and pBin infrared photodetectors by simulation, respectively. Further, the effects of the deviations from these optimal values on the dark currents of devices are analyzed. For the nBip detector, the maximum on-off ratio is obtained when the thickness and doping concentration are 40 nm and 2×1018 cm-3, respectively, while for the pBin detector, the thickness and doping concentration are 60 nm and 4×1017 cm-3, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O475

DOI:10.3788/aos201939.0504002

所属栏目:探测器

基金项目:上海市科委科技基金(18ZR1445300)、国家自然科学基金(11574335)

收稿日期:2018-10-25

修改稿日期:2018-12-27

网络出版日期:2019-01-21

作者单位    点击查看

林虹宇:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083中国科学院大学, 北京 100049
谢浩:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083中国科学院大学, 北京 100049
王洋:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083中国科学院大学, 北京 100049
陆宏波:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083中国科学院大学, 北京 100049
孙艳:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083
胡淑红:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083
陈鑫:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083
戴宁:中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083

联系人作者:胡淑红(hush@mail.sitp.ac.cn); 戴宁(ndai@mail.sitp.ac.cn);

【1】Zheng H J, Bai T Z, Wang Q X, et al. Infrared radiation characteristics of high-temperature H2O and CO2 gas mixture jet flows[J]. Acta Optica Sinica, 2017, 37(7): 0726001.
郑海晶, 白廷柱, 王全喜, 等. H2O和CO2高温混合气体喷流红外辐射特性[J]. 光学学报, 2017, 37(7): 0726001.

【2】Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109.

【3】Gao H H, Krier A, Sherstnev V V. Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 μm[J]. Applied Physics Letters, 2000, 77(6): 872-874.

【4】Rogalski A, Martyniuk P. Mid-wavelength infrared nBn for HOT detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969.

【5】Krier A, Suleiman W. Uncooled photodetectors for the 3-5 μm spectral range based on III-V heterojunctions[J]. Applied Physics Letters, 2006, 89(8): 083512.

【6】Sun T, Chen X G, Hu X N, et al. Analysis of surface leakage and 1/f noise on long-wavelength infrared HgCdTe photodiodes[J]. Acta Physica Sinica, 2005, 54(7): 3357-3362.
孙涛, 陈兴国, 胡晓宁, 等. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究[J]. 物理学报, 2005, 54(7): 3357-3362.

【7】Huang M L, Chang Y C, Chang C H, et al. Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3[J]. Applied Physics Letters, 2005, 87(25): 252104.

【8】Yang J R. Physics and technology of mercury telluride materials[M]. Beijing: National Defense Industry Press, 2012: 139.
杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012: 139.

【9】Masu K, Mishima T, Hiroi S I, et al. Preparation of (AlxGa1-x)yIn1-yAs (0≤x≤0.5, y=0.47) lattice matched to InP substrates by molecular beam epitaxy[J]. Journal of Applied Physics, 1982, 53(11): 7558-7560.

【10】Ashley T, Dean A B, Elliott C T. A heterojunction minority carrier barrier for InSb devices[J]. Semiconductor Science and Technology, 1993, 8(1S): S386-S389.

【11】Brunkov P N, Il’inskaya N D, Karandashev S A, et al. Low dark current P-InAsSbP/n-InAs/N-nAsSbP/n+-InAs double heterostructure back-side illuminated photodiodes[J]. Infrared Physics & Technology, 2016, 76: 542-545.

【12】Ashley T, Elliott T. Operation and properties of narrow-gap semiconductor devices near roomtemperature using non-equilibrium techniques[J]. Semiconductor Science and Technology, 1991, 6(12C): C99-C105.

【13】Lü Y F. LPE growth, characteristics and device structure optimization of InAs-based infrared films[D]. Beijing: Graduate School of Chinese academy of sciences, 2015: 82-86.
吕英飞. InAs基红外薄膜的LPE生长特性研究与器件结构优化探索[D]. 中国科学院研究生院(上海技术物理研究所), 2015: 82-86.

【14】Liu E K, Zhu B S, Luo J S. Semiconductor Physics[M]. 7th ed. Beijing: Electronic Industry Press, 2011: 338.
刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第七版. 北京: 电子工业出版社, 2011: 338.

【15】Capper P, Mauk M. Liquid phase epitaxy of electronic, optical and optoelectronic materials[M]. Chichester: John Wiley & Sons, Ltd, 2007.

【16】Wilson M R, Krier A, Mao Y. Phase equilibria in InAsSbP quaternary alloys grown by liquid phase epitaxy[J]. Journal of Electronic Materials, 1996, 25(9): 1439-1445.

【17】Fukui T, Horikoshi Y. Organometallic VPE growth of InAs1-x-ySbxPy on InAs[J]. Japanese Journal of Applied Physics, 1981, 20(3): 587-591.

【18】Mani H, Tournié E, Lazzari J L, et al. Liquid phase epitaxy and characterization of InAs1-x-ySbxPy on (100) InAs[J]. Journal of Crystal Growth, 1992, 121(3): 463-472.

【19】Martyniuk P, Rogalski A. Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector[J]. Optical and Quantum Electronics, 2014, 46(4): 581-591.

【20】Fitzgerald E A. Dislocations in strained-layer epitaxy: theory, experiment, and applications[J]. Materials Science Reports, 1991, 7(3): 87-142.

【21】Orders P J, Usher B F. Determination of critical layer thickness in InxGa1-xAs/GaAs heterostructures by X-ray diffraction[J]. Applied Physics Letters, 1987, 50(15): 980-982.

【22】Fritz I J. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy[J]. Applied Physics Letters, 1987, 51(14): 1080-1082.

【23】Matthews J W. Defects associated with the accommodation of misfit between crystals[J]. Journal of Vacuum Science and Technology, 1975, 12(1): 126-133.

引用该论文

Lin Hongyu,Xie Hao,Wang Yang,Lu Hongbo,Sun Yan,Hu Shuhong,Chen Xin,Dai Ning. Modeling of InAsSbP Blocking Barrier Grown by Liquid-Phase Epitaxy in InAs-Based Infrared Photodetector[J]. Acta Optica Sinica, 2019, 39(5): 0504002

林虹宇,谢浩,王洋,陆宏波,孙艳,胡淑红,陈鑫,戴宁. 基于液相外延的InAs基红外探测器InAsSbP阻挡层的仿真[J]. 光学学报, 2019, 39(5): 0504002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF