首页 > 论文 > 光学学报 > 39卷 > 5期(pp:506003--1)

单双通带可切换的微波光子滤波器

Microwave Photonic Filter with Switched Single and Dual Passbands

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于受激布里渊散射的单双通带可切换的微波光子滤波器。通过改变抽运光与信号光两波长之间的间隔, 可实现单通带滤波器与双通带滤波器之间的切换, 且通带频率可调。建立了理论模型并进行了仿真分析, 并通过实验进行了验证。实验结果显示, 抑制比达30 dB, 0~18 GHz范围内的频率响应可调, 实验结果与模拟结果相吻合。

Abstract

In this study, we presented the design and testing of a microwave photonic filter with switchable single- and dual-passband operation based on stimulated Brillouin scattering. By adjusting the interval between the wavelengths of the pump light and the signal light, the filter can be switched from single- to dual-passband operation. Moreover, the passband frequency can be tuned. In addition, we prepared a theoretical model of this device and made the corresponding simulation. The analysis was verified using a proof-of-concept experiment. The experimental results show that the rejection ratio can be up to 30 dB, and the frequency tuning range is approximately 0-18 GHz. The experimental results are observed to agree well with the simulated results.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/aos201939.0506003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61302026)、南京邮电大学自然科学基金(NY218052)

收稿日期:2018-10-31

修改稿日期:2019-01-14

网络出版日期:2019-01-23

作者单位    点击查看

徐恩明:南京邮电大学先进光子技术实验室, 江苏 南京 210023
李凡:南京邮电大学先进光子技术实验室, 江苏 南京 210023
张祖兴:南京邮电大学先进光子技术实验室, 江苏 南京 210023
李培丽:南京邮电大学先进光子技术实验室, 江苏 南京 210023

联系人作者:张祖兴(zxzhang@njupt.edu.cn); 徐恩明(enmingxu@njupt.edu.cn);

【1】Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

【2】Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.

【3】Lin T, Zhao S H, Zhu Z H, et al. Multi-band frequency conversion scheme based on single optical frequency comb for satellite communication[J]. Acta Optica Sinica, 2017, 37(6): 0623002.
林涛, 赵尚弘, 朱子行, 等. 基于单光频梳的卫星通信多频段变频方法[J]. 光学学报, 2017, 37(6): 0623002.

【4】Xu Y M, Pan W, Lu B, et al. Multi-stopband microwave photonic filter based on stimulated Brillouin scattering[J]. Chinese Journal of Lasers, 2018, 45(11): 1106004.
徐翌明, 潘炜, 卢冰, 等. 基于受激布里渊散射的多阻带微波光子滤波器[J]. 中国激光, 2018, 45(11): 1106004.

【5】Li Y D, Wang R, Pu T, et al. Review on high out-of-band suppression ratio of microwave photonic filter[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020005.
李元栋, 王荣, 蒲涛, 等. 高带外抑制比微波光子滤波器研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020005.

【6】Chen H, Zou X H, Yu G, et al. Experimental study on linearity of microwave photonic link with direct modulation or external modulation[J]. Chinese Journal of Lasers, 2018, 45(11): 1106002.
陈华, 邹喜华, 于歌, 等. 直调与外调型微波光子链路线性度的实验研究[J]. 中国激光, 2018, 45(11): 1106002.

【7】Hunter D B, Minasian R A. Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1463-1466.

【8】Pastor D, Ortega B, Capmany J, et al. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings[J]. Optics Letters, 2003, 28(19): 1802-1804.

【9】Mora J, Ortega B, Diez A, et al. Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 2006, 24(7): 2500-2509.

【10】Wang H, Zheng J Y, Li W, et al. Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source[J]. Optics Letters, 2013, 38(22): 4857-4860.

【11】Zhang W W, Minasian R A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2011, 23(23): 1775-1777.

【12】Yu Y, Dong J J, Xu E M, et al. Single passband microwave photonic filter with continuous wideband tunability based on electro-optic phase modulator and Fabry-Pérot semiconductor optical amplifier[J]. Journal of Lightwave Technology, 2011, 29(23): 3542-3550.

【13】Li W Z, Li M, Yao J P. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1287-1296.

【14】Chen C H, Huang C H, Horng T S, et al. Highly miniaturized multiband bandpass filter design based on a stacked spiral resonator structure[J], IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1278-1286.

【15】Wu R, Chen H, Zhang S W, et al. Tunable and selectable multipassband microwave photonic filter utilizing reflective and cascaded fiber Mach-Zehnder interferometers[J]. Journal of Lightwave Technology, 2017, 35(13): 2660-2668.

【16】Huang L, Chen D L, Zhang F Z, et al. Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source[J]. Optics Express, 2015, 23(20): 25539-25552.

【17】Jiang Y, Shum P P, Zu P, et al. A selectable multiband bandpass microwave photonic filter[J]. IEEE Photonics Journal, 2013, 5(3): 5500509.

【18】Xiao Y C, Guo J, Wu K, et al. An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering[J]. Optics Express, 2013, 21(3): 2718-2726.

【19】Hu S L, Li L W, Yi X K, et al. Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2017, 29(3): 330-333.

【20】Chan E H W, Alameh K E, Minasian R A. Photonic bandpass filters with high skirt selectivity and stopband attenuation[J]. Journal of Lightwave Technology, 2002, 20(11): 1962-1967.

引用该论文

Xu Enming,Li Fan,Zhang Zuxing,Li Peili. Microwave Photonic Filter with Switched Single and Dual Passbands[J]. Acta Optica Sinica, 2019, 39(5): 0506003

徐恩明,李凡,张祖兴,李培丽. 单双通带可切换的微波光子滤波器[J]. 光学学报, 2019, 39(5): 0506003

被引情况

【1】 朱雨霜, 桂林, 朱玉绚. 基于最大射频强度判别法的温度传感波长解调研究. 光学学报, 2019, 39(7): 728003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF