首页 > 论文 > 光学学报 > 39卷 > 5期(pp:501003--1)

电厂烟囱烟羽截面断层重建研究

Reconstruction of Tomography Image of Chimney Plume from Power Plant

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对多轴差分吸收光谱仪重建图像的时间分辨率较低的问题, 将成像差分吸收光谱仪技术与非负最小二乘法相结合, 提出了一种新的重建二氧化硫(SO2)气体的空间二维分布的方法。采用Savitzky-Golay滤波器对采样得到的柱浓度数据进行预处理, 使用顺序坐标法进行重建, 并利用克里金插值平滑重建图像。数值仿真结果表明, 重建图像的接近度最低可达0.11。实验结果表明, 所提方法从采集数据到完成图像重建的时间为52.37s, 适用于捕捉烟羽截面的瞬态浓度, 可实时重建SO2分布。

Abstract

To address the problem associated with the relatively low temporal resolution of the multi-axis differential optical-absorption spectroscopy used for reconstructing images, we introduce a method to reconstruct the two-dimensional spatial distribution of SO2 gas by combining the imaging differential absorption spectroscopy technology with the non-negative least square method. The sampled column density data are preprocessed using a Savitzky-Golay filter, the sequential coordinate-wise algorithm is used for reconstruction, and Kriging interpolation is used to smooth the reconstructed image. The numerical simulation results demonstrate that the nearness index of the reconstructed image is the lowest (0.11). The experimental results show that the time required to collect data and reconstruct an image using the proposed method is 52.37 s, which is applicable to the capture of the transient concentration of a plume cross section and the real-time reconstruction of SO2 distribution.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4

DOI:10.3788/aos201939.0501003

所属栏目:大气光学与海洋光学

基金项目:国家重点研发计划(2017YFB0503901)、国家重点研发计划(2016YFC0200401)

收稿日期:2018-10-31

修改稿日期:2019-01-03

网络出版日期:2019-01-21

作者单位    点击查看

钟鸣宇:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031安徽理工大学电气与信息工程学院, 安徽 淮南 232001
奚亮:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031
司福祺:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
周海金:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
王煜:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:司福祺(sifuqi@aiofm.ac.cn)

【1】Yao L, Garmash O, Bianchi F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399): 278-281.

【2】Frins E, Bobrowski N, Osorio M, et al. Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay[J]. Atmospheric Environment, 2014, 98: 347-356.

【3】Liu J, Si F Q, Zhou H J, et al. Estimation of sulfur dioxide emission from power plant using imaging differential optical absorption spectroscopy technique[J]. Acta Optica Sinica, 2015, 35(6): 0630003.
刘进, 司福祺, 周海金, 等. 基于成像差分吸收光谱技术测量电厂SO2排放方法研究[J]. 光学学报, 2015, 35(6): 0630003.

【4】Pundt I, Mettendorf K U, Laepple T, et al. Measurements of trace gas distributions using Long-path DOAS-Tomography during the motorway campaign BAB II: experimental setup and results for NO2[J]. Atmospheric Environment, 2005, 39(5): 967-975.

【5】Johansson M, GalleB, Rivera C, et al. Tomographic reconstruction of gas plumes using scanning DOAS[J]. Bulletin of Volcanology, 2009, 71(10): 1169-1178.

【6】Kazahaya R, Mori T, Kazahaya K, et al. Computed tomography reconstruction of SO2concentration distribution in the volcanic plume of Miyakejima, Japan, by airborne traverse technique using three UV spectrometers[J]. Geophysical Research Letters, 2008, 35(13): L13816.

【7】Wu C F, Chang S Y. Comparisons of radial plume mapping algorithms for locating gaseous emission sources[J]. Atmospheric Environment, 2011, 45(7): 1476-1482.

【8】Chang S Y, Wu C F. Evaluating the performance of the horizontal radial plume mapping technique for locating multiple plumes[J]. Journal of the Air & Waste Management Association, 2012, 62(11): 1249-1256.

【9】Olaguer E P. Adjoint model enhanced plume reconstruction from tomographic remote sensing measurements[J]. Atmospheric Environment, 2011, 45(38): 6980-6986.

【10】Olaguer E P, Erickson M H, Wijesinghe A, et al. Source attribution and quantification of benzene event emissions in a Houston ship channel community based on real-time mobile monitoring of ambient air[J]. Journal of the Air & Waste Management Association, 2016, 66(2): 164-172.

【11】Olaguer E P, Stutz J, Erickson M H, et al. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring[J]. Atmospheric Environment, 2017, 150: 220-228.

【12】Casaballe N, Osorio M, di Martino M, et al. Comparison between regularized optimization algorithms for tomographic reconstruction of plume cross sections in the atmosphere[J]. Earth and Space Science, 2017, 4(12): 723-736.

【13】Jr Goldsmith C D, Chanton J, Abichou T, et al. Methane emissions from 20 landfills across the United States using vertical radial plume mapping[J]. Journal of the Air & Waste Management Association, 2012, 62(2): 183-197.

【14】Grant R H, Boehm M T, Lawrence A F. Comparison of a backward-Lagrangian stochastic and vertical radial plume mapping methods for estimating animal waste lagoon emissions[J]. Agricultural and Forest Meteorology, 2013, 180: 236-248.

【15】Viguria M, Ro K S, Stone K C, et al. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions[J]. Journal of the Air & Waste Management Association, 2015, 65(4): 395-403.

【16】Li S W, Wei M H, Dai H F, et al. Reconstruction of spatial distributions of industrial emissions based on scaning multi-axis DOAS tomography[J]. Acta Optica Sinica, 2015, 35(4): 0401003.
李素文, 韦民红, 戴海峰, 等. 多轴DOAS断层扫描技术重构工业排放空间分布[J]. 光学学报, 2015, 35(4): 0401003.

【17】Wei M H, Tong M M, Li S W, et al. MAX-DOAS tomography reconstruction for gas plume[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2252-2256.
韦民红, 童敏明, 李素文, 等. 多轴差分吸收光谱断层扫描重建烟羽空间分布[J]. 光谱学与光谱分析, 2015, 35(8): 2252-2256.

【18】Si F Q, Xie P H, Liu Y, et al. Determination of plume by hyperspectral imaging differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2009, 29(9): 2458-2462.
司福祺, 谢品华, 刘宇, 等. 超光谱成像差分吸收光谱系统烟羽测量研究[J]. 光学学报, 2009, 29(9): 2458-2462.

【19】Franc V, Hlavácˇ V, Navara M. Sequential coordinate-wise algorithm for the non-negative least squares problem[M]∥Franc V, Hlavácˇ V, Navara M. eds. Computer Analysis of Images and Patterns. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 407-414.

【20】Beauchamp M, Malherbe L, de Fouquet C, et al. A polynomial approximation of the traffic contributions for kriging-based interpolation of urban air quality model[J]. Environmental Modelling & Software, 2018, 105: 132-152.

【21】Zhou H J. Studies on remote sensing of aerosol and trace gas vertical distribution by the MAX-DOAS[D]. Hefei: University of Science and Technology of China, 2013.
周海金. 大气气溶胶与痕量气体廓线MAX-DOAS遥测方法研究[D]. 合肥: 中国科学技术大学, 2013.

【22】Luo Y H, Sun L G, Liu W Q, et al. MAX-DOAS measurements of NO2 column densities and vertical distribution at Ny-Alesund, arctic during summer[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2336-2340.
罗宇涵, 孙立广, 刘文清, 等. 采用MAX-DOAS观测北极新奥尔松地区夏季NO2的柱浓度与垂直分布[J]. 光谱学与光谱分析, 2012, 32(9): 2336-2340.

【23】Chen P J, Feng P, Wu W W, et al. Material discrimination by multi-spectral CT based on image total variation and tensor dictionary[J]. Acta Optica Sinica, 2018, 38(11): 1111002.
陈佩君, 冯鹏, 伍伟文, 等. 基于图像总变分和张量字典的多能谱CT材料识别研究[J]. 光学学报, 2018, 38(11): 1111002.

【24】Zhou B, Liu W Q, Qi F, et al. Error analysis in differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2002, 22(8): 957-961.
周斌, 刘文清, 齐锋, 等. 差分吸收光谱法测量大气污染的测量误差分析[J]. 光学学报, 2002, 22(8): 957-961.

【25】Liu S S, Wei Q N, Wang F P, et al. Effect of optical density calculation methods on results of differential optical absorption spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2009, 4(2): 118-124.
刘世胜, 魏庆农, 王峰平, 等. DOAS技术中光学密度计算方法对测量结果的影响[J]. 大气与环境光学学报, 2009, 4(2): 118-124.

引用该论文

Zhong Mingyu,Xi Liang,Si Fuqi,Zhou Haijin,Wang Yu. Reconstruction of Tomography Image of Chimney Plume from Power Plant[J]. Acta Optica Sinica, 2019, 39(5): 0501003

钟鸣宇,奚亮,司福祺,周海金,王煜. 电厂烟囱烟羽截面断层重建研究[J]. 光学学报, 2019, 39(5): 0501003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF