首页 > 论文 > 光学学报 > 39卷 > 5期(pp:528001--1)

小型机载光电平台中基于扩展卡尔曼滤波的地面目标定位算法

Ground-Target Geo-Location Method Based on Extended Kalman Filtering for Small-Scale Airborne Electro-Optical Platform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高小型机载光电平台的目标定位精度, 提出了一种基于扩展卡尔曼滤波(EKF)的目标定位算法。根据机载光电平台锁定跟踪目标的特性, 对同一目标进行多次测量。依据组合导航系统测量的载机位置、姿态信息及位置编码器测量的框架角位置信息, 结合地球椭球模型确定目标的视轴指向。建立状态方程和测量方程, 利用扩展卡尔曼滤波对目标的地理位置进行估计。采用蒙特卡罗法分析了测量误差对目标定位精度的影响, 仿真结果显示:所提算法的精度较高, 稳健性较高。采用飞行试验验证了该算法的有效性, 当飞行高度为4300 m时, 目标定位精度优于15 m。与基于地球椭球模型的算法相比, 所提算法的目标定位精度明显提高。

Abstract

To improve the target location accuracy of a small-scale airborne electro-optical platform, a target geo-location algorithm based on extended Kalman filtering (EKF) is proposed. According to the characteristics of a tracking target locked by the airborne electro-optical platform, the same target is measured repeatedly. Using the aircraft position and attitude information measured by an integrated navigation system as well as the position information of the gimbal angles from the position encoder, the direction of the line of sight for the target is determined according to the Earth ellipsoid model. The state and measurement equations are established, and the geographical position of the target is estimated using EKF. The Monte Carlo method is used to analyze the influence of the measurement error on the target geo-location accuracy. The simulation results demonstrate that the proposed algorithm is highly accurate and robust. The validity of the algorithm is verified by a flight test. At a flight height of 4300 m, the geo-location error of the target is less than 15 m. Compared with that of the algorithm based on the Earth ellipsoid model, the target geo-location accuracy of the proposed algorithm is improved obviously.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:V248

DOI:10.3788/aos201939.0528001

所属栏目:遥感与传感器

基金项目:国家自然科学基金(61877053, 61601404)、浙江省“信息与通信工程”一流学科资助项目

收稿日期:2018-11-19

修改稿日期:2019-01-02

网络出版日期:2019-01-23

作者单位    点击查看

穆绍硕:浙江传媒学院电子信息学院, 浙江 杭州 310018
乔川:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:穆绍硕(hitshaoshuomu@163.com)

【1】Wang Z C, Dai M, Li G, et al. Apparatus design for surveying relative angular translation of airborne optoelectronic platform[J]. Chinese Journal of Lasers, 2013, 40(9): 0908007.
王子辰, 戴明, 李刚, 等. 机载光电平台相对角位移测量系统设计[J]. 中国激光, 2013, 40(9): 0908007.

【2】Bai G B, Liu J H, Song Y M, et al. Two-UAV intersection localization system based on the airborne optoelectronic platform[J]. Sensors, 2017, 17(1): 98.

【3】Xu C, Huang D Q, Han W. High precision passive target localization based on airborne electro-optical payload[C]. 14th International Conference on Optical Communications and Networks (ICOCN), Nanjing, China, 2015: 1-3.

【4】Barber D B, Redding J D, McLain T W, et al. Vision-based target geo-location using a fixed-wing miniature air vehicle[J]. Journal of Intelligent and Robotic Systems, 2006, 47(4): 361-382.

【5】Wang X, Liu J H, Zhou Q F. Real-time multi-target localization from unmanned aerial vehicles[J]. Sensors, 2016, 17(12): 33.

【6】Liu C L, Liu J H, Song Y M, et al. A novel system for correction of relative angular displacement between airborne platform and UAV in target localization[J]. Sensors, 2017, 17(3): 510.

【7】Tan L G, Dai M, Liu J H, et al. Error analysis of target automatic positioning for airborne photo-electri measuring device[J]. Optics and Precision Engineering, 2013, 21(12): 3133-3140.
檀立刚, 戴明, 刘晶红, 等. 机载光电测量设备目标自主定位误差分析[J]. 光学 精密工程, 2013, 21(12): 3133-3140.

【8】Zhou Q F, Liu J H,Xiong W Z, et al. Multi-target self-determination orientation system based on airborne photoelectric imaging platform[J]. Acta Optica Sinica, 2015, 35(1): 0112005.
周前飞, 刘晶红, 熊文卓, 等. 机载光电成像平台的多目标自主定位系统研究[J]. 光学学报, 2015, 35(1): 0112005.

【9】Xu C, Huang D Q. Error analysis for target localization with unmanned aerial vehicle electro-optical detection platform[J]. Chinese Journal of Scientific Instrument, 2013(10): 2265-2270.
徐诚, 黄大庆. 无人机光电侦测平台目标定位误差分析[J]. 仪器仪表学报, 2013(10): 2265-2270.

【10】Wang J, Gao L M, Yao J F. Analysis on coordinate conversion error of airborne measuring device[J]. Optics and Precision Engineering, 2009, 17(2): 388-394.
王晶, 高利民, 姚俊峰. 机载测量平台中的坐标转换误差分析[J]. 光学 精密工程, 2009, 17(2): 388-394.

【11】Wang J, Yang L B, Gao L M. Target orientation measuring of airborne EO platform[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2009, 32(4): 531-534.
王晶, 杨立保, 高利民. 机载光电平台目标定位测量技术[J]. 长春理工大学学报(自然科学版), 2009, 32(4): 531-534.

【12】Stich E J. Geo-pointing and threat location techniques for airborne border surveillance[C]. IEEE International Conference on Technologies for Homeland Security (HST), 12-14 Nov. 2013, Waltham, MA, USA, 2013: 136-140.

【13】Du Y L, Ding Y L, Xu Y S, et al. Geo-location algorithm for TDI-CCD aerial panoramic camera[J]. Acta Optica Sinica, 2017, 37(3): 0328003.
杜言鲁, 丁亚林, 许永森, 等. TDI-CCD全景式航空相机对地目标定位的算法[J]. 光学学报, 2017, 37(3): 0328003.

【14】Qiao C, Ding Y L, Xu Y S, et al. Image registration method based on geo-location information and precision analysis[J]. Acta Optica Sinica, 2017, 37(8): 0828001.
乔川, 丁亚林, 许永森, 等. 基于地理位置信息的图像配准方法及精度分析[J]. 光学学报, 2017, 37(8): 0828001.

【15】Qiao C, Ding Y L, Xu Y S, et al. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system[J]. Journal of Applied Remote Sensing, 2018, 12(1): 016004.

【16】Yang H T, Zhang G D, Shi K, et al. Aerial camera geo-location method based on POS system[J]. Acta Photonica Sinica, 2018, 47(4): 0412001.
杨洪涛, 张广栋, 史魁, 等. 一种基于POS系统的航空相机目标定位方法[J]. 光子学报, 2018, 47(4): 0412001.

【17】Shen E H, Zhang Y S, Li K. Positioning model and simulation of conical scanning airborne laser bathymetry system[J]. Chinese Journal of Lasers, 2016, 43(2): 0214001.
申二华, 张永生, 李凯. 圆扫描式机载激光测深系统定位模型与仿真分析[J]. 中国激光, 2016, 43(2): 0214001.

【18】Hilkert J M. Kinematic algorithms for line-of-sight pointing and scanning using INS/GPS position and velocity information[J]. Proceeding of SPIE, 2005, 5810: 11-23.

【19】Zhu F, Yu F S, Wu Y M, et al. Analysis of attitude calibration precision of P4P camera[J]. Acta Optica Sinica, 2018, 38(11): 1115005.
朱帆, 于芳苏, 吴易明, 等. P4P法相机姿态标定精度分析[J]. 光学学报. 2018, 38(11): 1115005.

【20】Tang Y J, Dong Y J, Ren H L, et al. Phase noise compensation algorithm based on Kalman filtering in time and frequency domains for CO-OFDM system[J]. Acta Optica Sinica, 2017, 37(9): 0906002.
唐英杰, 董月军, 任宏亮, 等. 基于时频域卡尔曼滤波的CO-OFDM系统相位噪声补偿算法[J]. 光学学报, 2017, 37(9): 0906002.

【21】Qin Y Y, Zhang H Y, Wang S H. Theory of Kalman filter and integrated navigation[M]. 2nd ed. Xi′an: Northwestern Polytechnical University Press, 2012: 198-212.
秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 2版. 西安: 西北工业大学出版社, 2012: 198-212.

引用该论文

Mu Shaoshuo,Qiao Chuan. Ground-Target Geo-Location Method Based on Extended Kalman Filtering for Small-Scale Airborne Electro-Optical Platform[J]. Acta Optica Sinica, 2019, 39(5): 0528001

穆绍硕,乔川. 小型机载光电平台中基于扩展卡尔曼滤波的地面目标定位算法[J]. 光学学报, 2019, 39(5): 0528001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF