首页 > 论文 > 光学学报 > 39卷 > 5期(pp:506006--1)

近红外PbS量子点掺杂光子晶体光纤的光传输特性

Optical Transmission Performance of Photonic Crystal Fiber Doped with Near-Infrared PbS Quantum Dots

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

制备了导光波带位于近红外1400~1650 nm的硫化铅(PbS)量子点掺杂光子晶体光纤(QD-PCF)。测量了QD-PCF对980 nm抽运光和1550 nm信号光的吸收。在980 nm激光激励下, 测量了QD-PCF的光致荧光(PL)光谱, 确定了1550 nm中心波长处PL光强最强时的量子点掺杂浓度(质量分数)和光纤长度, 发现其PL光强远大于普通单纤芯掺杂的量子点光纤(QDF)。实验发现QD-PCF的PL光强会出现间隔距离较短的多光强峰值, 该多光强峰值现象与掺杂浓度有关。对比测量了QD-PCF和未掺杂PCF的带隙, 表明量子点掺杂没有改变PCF的带隙分布。测量了QD-PCF的抽运激励阈值和抽运饱和功率, 其抽运阈值功率与QDF接近, 抽运饱和功率大于QDF, 这与QD-PCF有较大的光纤截面以及较高的量子点掺杂浓度有关。

Abstract

We fabricated a PbS quantum-dot-doped photonic crystal fiber (QD-PCF) working in the near-infrared range of 1400-1650 nm and measured its absorption of 980 nm pump light and 1550 nm signal light. Upon the excitation of 980 nm pump light, we acquired the photoluminescence (PL) spectrum of the QD-PCF and determined the doping concentration (mass fraction) and fiber length that maximized the PL intensity at the central wavelength of 1550 nm. The PL intensity of the QD-PCF far exceeded that of the usual single-core quantum-dot-doped fiber (QDF), appearing multiple intensity peaks spacing a short distance. The intensities of these peaks were related to the doping concentration. Comparing the QD-PCF with the un-doped PCF, the bandgap was not found to be changed by quantum-dot doping. The threshold and saturated pump powers of the QD-PCF were also measured. The threshold pump power approximated that of the QDF, but the saturated pump power exceeded that of the QDF, owing to the larger fiber section and higher doping concentration in the QD-PCF.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/aos201939.0506006

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61274124, 61474100)

收稿日期:2018-11-19

修改稿日期:2019-01-18

网络出版日期:2019-02-19

作者单位    点击查看

程成:浙江工业大学光电子智能化技术研究所, 浙江 杭州 310023
沈承昱:浙江工业大学光电子智能化技术研究所, 浙江 杭州 310023

联系人作者:沈承昱(85818488@qq.com)

【1】Belli F, Abdolvand A, Chang W, et al. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber[J]. Optica, 2015, 2(4): 292-300.

【2】Hooper L E, Mosley P J, Muir A C, et al. Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion[J]. Optics Express, 2011, 19(6): 4902-4907.

【3】Cheng X, Lowe S B, Reece P J, et al. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications[J]. Chemical Society Reviews, 2014, 43(8): 2680-2700.

【4】Mongin C, Moroz P, Zamkov M, et al. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots[J]. Nature Chemistry, 2017, 10(2): 225-230.

【5】Geng Y, Wang H L, Chen Z S. Dispersion and loss control of high birefringence photonic crystal fiber with CdSe/ZnS quantum dots film[J]. Acta Photonica Sinica, 2015, 44(1): 0106006.
耿琰, 王河林, 陈中师. 基于CdSe/ZnS量子点薄膜结构的高双折射光子晶体光纤的色散损耗控制[J]. 光子学报, 2015, 44(1): 0106006.

【6】Larrión B, Hernáez M, Arregui F J, et al. Photonic crystal fiber temperature sensor based on quantum dot nanocoatings[J]. Journal of Sensors, 2009, 2009: 1-6.

【7】Qian W, Zhao C L, He S, et al. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror[J]. Optics Letters, 2011, 36(9): 1548-1550.

【8】Cheng C, Wu C B. Near infrared S-C-L ultra-wide band low noise PbS quantum dot doped fiber amplifier[J]. Acta Optica Sinica, 2018, 38(10): 1006006.
程成, 吴昌斌. 近红外S-C-L超宽波带低噪声PbS量子点掺杂光纤放大器[J]. 光学学报, 2018, 38(10): 1006006.

【9】Dong G, Wu B, Zhang F, et al. Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses[J]. Journal of Alloys and Compounds, 2011, 509(38): 9335-9339.

【10】Cheng C,Cheng X Y. Nanophotonics and applications of quantum dots[M]. Beijing: Science Press, 2017: 53-247.
程成, 程潇羽. 量子点纳米光子学及应用[M]. 北京: 科学出版社, 2017: 53-247.

【11】Cheng C, Wang G D, Cheng X Y. Effects of surface polarization on the bandgap and the absorption-peak wavelength of quantum dot at room temperature[J]. Acta Physica Sinica, 2017, 66(13): 137802.
程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响[J]. 物理学报, 2017, 66(13): 137802.

【12】Binks D J. Multiple exciton generation in nanocrystal quantum dots: controversy, current status and future prospects[J]. Physical Chemistry Chemical Physics, 2011, 13(28): 12693-12704.

【13】Wang Y Y, Wheeler N V, Couny F, et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics Letters, 2011, 36(5): 669-671.

【14】Shen L F, He S L, Wu L. Application of equivalent medium theory in plane wave expansion analysis of photonic crystals[J]. Acta Physica Sinica, 2002, 51(5): 1133-1138.
沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用[J]. 物理学报, 2002, 51(5): 1133-1138.

【15】Huang X, Fang Z, Kang S, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. Journal of Materials Chemistry C, 2017, 5(31): 7927-7934.

【16】Abedin K S, Taunay T F, Fishteyn M, et al. Cladding-pumped erbium-doped multicore fiber amplifier[J]. Optics Express, 2012, 20(18): 20191-20200.

引用该论文

Cheng Cheng,Shen Chengyu. Optical Transmission Performance of Photonic Crystal Fiber Doped with Near-Infrared PbS Quantum Dots[J]. Acta Optica Sinica, 2019, 39(5): 0506006

程成,沈承昱. 近红外PbS量子点掺杂光子晶体光纤的光传输特性[J]. 光学学报, 2019, 39(5): 0506006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF