首页 > 论文 > 光学学报 > 39卷 > 5期(pp:509001--1)

毫米波全息成像中的部分发育散斑模型

Partially Developed Speckle Model for Millimeter-Wave Holographic Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

建立了包含镜面反射分量的毫米波全息成像中的部分发育散斑模型。将部分发育的散斑模型与毫米波全息成像的卷积过程相结合, 推导了等效散射中心个数, 建立了散斑对比度与高斯粗糙面均方根高度、相关长度和成像分辨率的关系。基于近场物理光学法, 对随机粗糙面的毫米波全息散斑图样进行了蒙特卡罗仿真和散斑对比度分析。结果表明, 当等效散射中心个数较少时, 该模型与随机积分法及仿真所估计的散斑对比度一致, 优于传统模型的估计结果。

Abstract

In this paper, a partially developed speckle model for millimeter-wave holographic imaging with specular reflection is established. The partially developed speckle model is combined with the convolution process of millimeter-wave holographic imaging. The number of equivalent scattering centers is deduced, and the relationship among speckle contrast, root-mean-square height, correlation length, and imaging resolution of a Gaussian rough surface is established. The Monte-Carlo simulation experiment and the speckle contrast analysis are conducted on the millimeter holographic speckle patterns of a random rough surface based on the near-field physical optics method. The results show that when the number of equivalent scattering centers is small, the speckle contrast estimated using the proposed model is consistent with those estimated using the stochastic integral method and the simulation experiment, which is superior to the estimation results of the conventional models.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN26;O436.2

DOI:10.3788/aos201939.0509001

所属栏目:全息

基金项目:国家973计划(2015CB755406)、国家自然科学基金(61601424)

收稿日期:2018-11-19

修改稿日期:2018-12-31

网络出版日期:2019-01-21

作者单位    点击查看

经文:中国工程物理研究院电子工程研究所, 四川 绵阳 621999
江舸:中国工程物理研究院电子工程研究所, 四川 绵阳 621999
成彬彬:中国工程物理研究院电子工程研究所, 四川 绵阳 621999
张健:中国工程物理研究院电子工程研究所, 四川 绵阳 621999

联系人作者:经文(marty1865@foxmail.com)

【1】Sheen D M, McMakin D L, Hall T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1581-1592.

【2】Gao J K, Qin Y L, Deng B, et al. A novel method for 3-d millimeter-wave holographic reconstruction based on frequency interferometry techniques[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1579-1596.

【3】Grossman E N, Popovic N, Chamberlin R A, et al. Submillimeter wavelength scattering from random rough surfaces[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 546-562.

【4】Sheen D M, McMakin D L, Hall T E. Speckle in active millimeter-wave and terahertz imaging and spectroscopy[J]. Proceedings of SPIE, 2007, 6548: 654809.

【5】Cooper K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182.

【6】Petkie D T, Casto C, de Lucia F C, et al. Active and passive imaging in the THz spectral region: phenomenology, dynamic range, modes, and illumination[J]. Journal of the Optical Society of America B, 2008, 25(9): 1523-1531.

【7】Patrick M A. Illumination strategies to reduce target orientation requirements and speckle in millimeter wave imaging[D]. Columbus, USA: The Ohio State University, 2014.

【8】Goodman J W. Speckle phenomena in optics: theory and applications[M]. Englewood, Colorado, USA: Ben Roberts & Company, 2007.

【9】Martino G D, Iodice A, Riccio D, et al. Equivalent number of scatterers for SAR speckle modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2555-2564.

【10】Fujii H, Asakura T. A contrast variation of image speckle intensity under illumination of partially coherent light[J]. Optics Communications, 1974, 12(1): 32-38.

【11】Goodman J W. Dependence of image speckle contrast on surface roughness[J]. Optics Communications, 1975, 14(3): 324-327.

【12】Jakeman E, Tough R J A. Non-Gaussian models for the statistics of scattered waves[J]. Advances in Physics, 1988, 37(5): 471-529.

【13】Qiao L B, Wang Y X, Zhao Z R, et al. Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(12): 1221-1236.

【14】Zhang Y, Deng B, Yang Q, et al. Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm[J]. Sensors, 2017, 17(10): 2438.

【15】Tsang L, Kong J A, Ding K H, et al. Scattering ofelectromagnetic waves: numerical simulations[M]. New York, USA: John Wiley & Sons, Inc., 2001.

引用该论文

Jing Wen,Jiang Ge,Cheng Binbin,Zhang Jian. Partially Developed Speckle Model for Millimeter-Wave Holographic Imaging[J]. Acta Optica Sinica, 2019, 39(5): 0509001

经文,江舸,成彬彬,张健. 毫米波全息成像中的部分发育散斑模型[J]. 光学学报, 2019, 39(5): 0509001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF