首页 > 论文 > 光学学报 > 39卷 > 5期(pp:506002--1)

基于石墨烯的D型双芯光纤调制器

Graphene-Based D-Shape Twin-Core Fiber Modulator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用石墨烯独特的吸收特性以及双芯光纤两芯之间的耦合作用, 提出并设计了一种基于石墨烯的D型双芯光纤(DTCF)调制器的结构, 该结构结合了吸收调制和耦合调制的优势。仿真验证了结构的调制可行性, 基于有限元法数值模拟分析了调制器传输模式、两纤芯半径、纤芯距、石墨烯层数、过渡层材料对调制器性能的影响, 并通过性能优化最终实现了调制带宽为8.557 GHz、消光比为67.64 dB、半波电压为1.763 V、调制深度为98.75%、插入损耗为1.4 dB、调制器长度为3.07 mm的高性能调制器。

Abstract

In this study, we propose and design the structure of a graphene-based D-shape twin-core fiber (DTCF) modulator by utilizing the unique absorption characteristics of graphene and the coupling between two cores, which integrates the advantages of absorption modulation and coupling modulation. Further, the modulation feasibility of this structure can be verified using numerical simulation. Subsequently, the effects of the transmission mode, two core radius, twin-core distance, number of graphene layers, and transition layer materials of the modulator on the performances are analyzed based on the finite element method. Finally, a high-performance modulator with a modulation bandwidth of 8.557 GHz, an extinction ratio of 67.64 dB, a half-wave voltage of 1.763 V, a modulation depth of 98.75%, an insertion loss of 1.4 dB, and a modulator length of 3.07 mm can be achieved through optimization.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/aos201939.0506002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61827817, 61525501)

收稿日期:2018-11-20

修改稿日期:2018-12-21

网络出版日期:2019-01-03

作者单位    点击查看

金丽丹:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
宁提纲:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
裴丽:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
郑晶晶:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
李晶:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044
贺雪晴:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044

联系人作者:裴丽(lipei@bjtu.edu.cn)

【1】Kawanishi T, Sakamoto T, Izutsu M. High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 79-91.

【2】Binh L N. Lithium niobate optical modulators: devices and applications[J]. Journal of Crystal Growth, 2006, 288(1): 180-187.

【3】Sugawara M, Fujii T, Yamazaki S, et al. Theoretical and experimental study of the optical-absorption spectrum of exciton resonance in In0.53Ga0.47 As/InP quantum wells[J]. Physical Review B: Condensed Matter, 1990, 42(15): 9587-9597.

【4】Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

【5】Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19): 196405.

【6】Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.

【7】Bi H W, Ma J Y, Yang K L, et al. Graphene fiber and its application[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.
毕卫红, 马敬云, 杨凯丽, 等. 石墨烯光纤及其应用[J]. 激光与光电子学进展, 2017, 54(4): 040002.

【8】Fu M X, Zhang Y. Progress of terahertz devices based on graphene[J]. Journal of Electronic Science and Technology, 2013, 11(4): 352-359.

【9】Liao G Z, Zhang J, Cai X, et al. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.
廖国珍, 张军, 蔡祥, 等. 基于石墨烯的全光纤温度传感器的研究[J]. 光学学报, 2013, 33(7): 0706004

【10】Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

【11】Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

【12】Yang L Z, Hu T, Hao R, et al. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide[J]. Optics Letters, 2013, 38(14): 2512-2515.

【13】Midrio M, Boscolo S, Moresco M, et al. Graphene-assisted critically-coupled optical ring modulator[J]. Optics Express, 2012, 20(21): 23144.

【14】Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

【15】Sorianello V, Midrio M, Contestabile G, et al. Graphene-silicon phase modulators with gigahertz bandwidth[J]. Nature Photonics, 2018, 12(1): 40-44.

【16】Phare C T, Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511-514.

【17】Chen X, Wang Y, Xiang Y J , et al. A broadband optical modulator based on a graphene hybrid plasmonic waveguide[J]. Journal of Lightwave Technology, 2016, 34(21): 4948-4953.

【18】Xiao T H, Cheng Z Z, Goda K. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits[J]. Nanotechnology, 2017, 28(24): 245201.

【19】Zhou F, Jin X F, Hao R, et al. A graphene-based all-fiber electro-absorption modulator[J]. Journal of Optics, 2016, 45(4): 337-342.

【20】Zheng J J, Zheng K, Peng J, et al. Analysis of splicing and splicing fusion coupling efficiency between single-core fiber and dual-core fiber[J]. Acta Optica Sinica, 2010, 30(9): 2529-2535.
郑晶晶, 郑凯, 彭健, 等. 单芯光纤与双芯光纤的对接和熔接耦合效率分析[J]. 光学学报, 2010, 30(9): 2529-2535.

【21】Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

【22】Ye S W, Wang Z S, Tang L F, et al. Electro-absorption optical modulator using dual-graphene-on-graphene configuration[J]. Optics Express, 2014, 22(21): 26173-26180.

【23】Yan J, Zhang Y B , Kim P, et al. Electric field effect tuning of electron-phonon coupling in graphene[J]. Physical Review Letters, 2007, 98(16): 166802.

【24】Zheng S W, Ren G B, Lin Z, et al. Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber[J]. Applied Optics, 2013, 52(19): 4541-4548.

【25】Qian J R, Huang W P. Coupled-mode theory for LP modes[J]. Journal of Lightwave Technology, 1986, 4(6): 619-625.

【26】Hao R, Du W, Li E P, et al. Graphene assisted TE/TM-independent polarizer based on Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1112-1115.

【27】Zhou F, Du W. A graphene-based all-fiber TE/TM switchable polarizer[J]. Journal of Optics, 2018, 20(3): 035401.

【28】Zhu B F. Study on micro-nano-optical devices based on graphene plasmons and hexagonal boron nitride[D]. Beijing: Beijing Jiaotong University, 2017: 109-117.
朱博枫. 基于石墨烯等离激元及六方氮化硼的微纳光器件的研究[D]. 北京: 北京交通大学, 2017: 109-117.

【29】Park B J, Kim M K, Kim J T. Analysis of a graphene-based silicon electro-absorption modulator in isotropic and anisotropic graphene models[J]. Journal of the Korean Physical Society, 2017, 70(11): 967-972.

【30】Fan M Y, Yang H M, Zheng P F, et al. Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide[J]. Optics Express, 2017, 25(18): 21619-21629.

【31】Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.

【32】Xiao Y, Zhang J, Yu J, et al. Theoretical investigation of optical modulators based on graphene-coated side-polished fiber[J]. Optics Express, 2018, 26(11): 13759.

引用该论文

Jin Lidan,Ning Tigang,Pei Li,Zheng Jingjing,Li Jing,He Xueqing. Graphene-Based D-Shape Twin-Core Fiber Modulator[J]. Acta Optica Sinica, 2019, 39(5): 0506002

金丽丹,宁提纲,裴丽,郑晶晶,李晶,贺雪晴. 基于石墨烯的D型双芯光纤调制器[J]. 光学学报, 2019, 39(5): 0506002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF