首页 > 论文 > 光学学报 > 39卷 > 5期(pp:529001--1)

基于偏振辐射图融合的水面太阳耀光抑制方法

Method for Water Surface Sun Glint Suppression Based on Polarized Radiation Image Fusion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于偏振辐射图融合的太阳耀光抑制方法。采用同时偏振成像技术对耀光水面进行偏振测量, 获得0°、45°、90° 3个方向的偏振辐射图。在耀光受到最强抑制的偏振辐射图中选择残留强耀光区域, 计算其Stokes参量, 生成区域耀光抑制偏振辐射图。将所选偏振辐射图与区域耀光抑制偏振辐射图融合, 进一步抑制耀光强度。室内实验结果表明, 该方法可有效抑制耀光, 消除图像的饱和像素, 获得的融合图的亮度比强度图更加均匀, 目标细节和轮廓信息更清晰, 目标相对耀光背景的对比度显著提高。

Abstract

A new sun glint suppression method is proposed based on polarized radiation image fusion. Herein, the polarization measurement of sun glint is performed using the simultaneous polarization imaging technology and the polarized radiation images of 0°, 45°, and 90° are obtained. In the polarized radiation image with the strongest glint suppression, the residual strong glint region is selected and used to generate a regional glint suppression polarization radiation image based on the calculation of Stokes parameters. The selected polarized radiation image is fused with the regional glint suppression polarized radiation image to further suppress the glint intensity. The indoor experimental results demonstrate that the proposed method can effectively suppress glint and eliminate image saturation. In addition, the obtained fusion image is more uniform than the intensity image, and the target details and contour information are clear, which significantly improves the contrast of the target relative to the flare background.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201939.0529001

所属栏目:散射

基金项目:国家重点研发计划项目(2016YFE0201400)、卫星应用共性关键技术项目(32-Y20A22-9001-15/17)、高分重大专项资助项目(GFZX04011805)、中科院合肥研究院重点项目(Y73H9P1801)

收稿日期:2018-11-22

修改稿日期:2019-01-07

网络出版日期:2019-01-22

作者单位    点击查看

陈卫:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026国防科技大学, 安徽 合肥 230037中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
乔延利:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
孙晓兵:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
殷玉龙:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031

联系人作者:孙晓兵(xbsun@aiofm.ac.cn); 陈卫(chw523@mail.ustc.edu.cn);

【1】Kay S, Hedley J D, Lavender S. Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths[J]. Remote Sensing, 2009, 1(4): 697-730.

【2】Lee Z P, Ahn Y H, Mobley C, et al. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform[J]. Optics Express, 2010, 18(25): 26313-26324.

【3】Wang M, Bailey S W. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products[J]. Applied Optics, 2001, 40(27): 4790-4798.

【4】Kay S, Hedley J, Lavender S. Sun glint estimation in marine satellite images: a comparison of results from calculation and radiative transfer modeling[J]. Applied Optics, 2013, 52(23): 5631-5639.

【5】Zhou G H, Zhao Y C, Geng X R, et al. Correction of skyglint above water surface based on polarized principle[J]. Advances in Water Science, 2007, 18(5): 762-767.
周冠华, 赵永超, 耿修瑞, 等. 基于偏振原理的水面反射光的剥离[J]. 水科学进展, 2007, 18(5): 762-767.

【6】Foster R, Gilerson A. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field[J]. Applied Optics, 2016, 55(33): 9476-9494.

【7】Zhang X, He S, Shabani A, et al. Spectral sea surface reflectance of skylight[J]. Optics Express, 2017, 25(4): A1-A13.

【8】Gilerson A, Carrizo C, Foster R, et al. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color[J]. Optics Express, 2018, 26(8): 9615-9633.

【9】Mobley C D. Polarized reflectance and transmittance properties of windblown sea surfaces[J]. Applied Optics, 2015, 54(15): 4828-4849.

【10】Hieronymi M. Polarized reflectance and transmittance distribution functions of the ocean surface[J]. Optics Express, 2016, 24(14): A1045-A1068.

【11】Liu Z G, Zhou G H. Polarization of sun glint[J]. Journal of Infrared and Millimeter Waves, 2007, 26(5): 362-365.
刘志刚, 周冠华. 太阳耀光的偏振分析[J]. 红外与毫米波学报, 26(5): 362-365.

【12】Chen W, Sun X B, Qiao Y L, et al. Polarization detection of marine targets covered in glint[J]. Infrared and Laser Engineering, 2017, 46(S1): 63-68.
陈卫, 孙晓兵, 乔延利, 等. 海面耀光背景下的目标偏振检测[J]. 红外与激光工程, 2017, 46(S1): 63-68.

【13】Chen X F, Gu X F, Cheng T H, et al. Simulation and analysis of polarization characteristics for real sea surface sunglint[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1648-1653.
陈兴峰, 顾行发, 程天海, 等. 真实海洋表面的太阳耀光偏振辐射特性仿真与分析[J]. 光谱学与光谱分析, 2011, 31(6): 1648-1653.

【14】Zhai P W, Hu Y, Trepte C R, et al. A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method[J]. Optics Express, 2009, 17(4): 2057-2079.

【15】Tonizzo A, Gilerson A, Harmel T, et al. Estimating particle composition and size distribution from polarized water-leaving radiance[J]. Applied Optics, 2011, 50(25): 5047-5058.

【16】Harmel T, Gilerson A, Tonizzo A, et al. Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements[J]. Applied Optics, 2012, 51(35): 8324-8340.

【17】Zhao H, Ji Z, Zhang Y, et al. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint[J]. Optics Express, 2016, 24(15): 16396-16409.

【18】Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun′s glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

【19】Cox C. Statistics of the sea surface derived from sun glitter[J]. Journal of Marine Research, 1954, 13: 198-227.

【20】Yang W, Gu G H, Chen Q, et al. Obtaining and processing of Mueller matrix image[J]. Infrared and Laser Engineering, 2015, 44(12): 3831-3836.
杨蔚, 顾国华, 陈钱, 等. 穆勒矩阵图像的获取及处理[J]. 红外与激光工程, 2015, 44(12): 3831-3836.

【21】Goldstein D H. Polarized light[M]. New York: Marcel Dekker Inc, 2003: 62-65.

【22】Collett A E. Field guide to polarization[M]. Washington DC: CRC Press, 2005: 16-17.

【23】Yi W, Zeng Y, Yuan Z. Fusion of GF-3 SAR and optical images based on the nonsubsampled contourlet transform[J]. Acta Optica Sinica, 2018, 38(11): 1110002.
易维, 曾湧, 原征. 基于NSCT变换的高分三号SAR与光学图像融合[J]. 光学学报, 2018, 38(11): 1110002.

【24】Wang Y H, Tao Z X. Overview of quality evaluation methods of fused infrared and visible images[J]. Infrared, 2012, 33(6): 7-11.
王跃华, 陶忠祥. 红外与可见光图像融合质量评价方法综述[J]. 红外, 2012, 33(6): 7-11.

【25】Wang X, Liang J A, Long H B, et al. Experimental study on long wave infrared polarization imaging of typical background and objectives[J]. Infrared and Laser Engineering, 2016, 45(7): 0704001.
王霞, 梁建安, 龙华宝, 等. 典型背景和目标的长波红外偏振成像实验研究[J]. 红外与激光工程, 2016, 45(7): 0704001.

引用该论文

Chen Wei,Qiao Yanli,Sun Xiaobing,Yin Yulong. Method for Water Surface Sun Glint Suppression Based on Polarized Radiation Image Fusion[J]. Acta Optica Sinica, 2019, 39(5): 0529001

陈卫,乔延利,孙晓兵,殷玉龙. 基于偏振辐射图融合的水面太阳耀光抑制方法[J]. 光学学报, 2019, 39(5): 0529001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF