首页 > 论文 > 光学学报 > 39卷 > 5期(pp:514001--1)

激光熔覆Al2O3/Fe901复合涂层的强化机制及耐磨性

Strengthening Mechanism and Wear Resistance of Al2O3/Fe901 Composite Coating Prepared by Laser Cladding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高金属材料表面涂层的耐磨性, 采用激光熔覆工艺制备了Al2O3增强Fe901金属陶瓷复合涂层, 研究了Al2O3陶瓷增强相对Fe基熔覆层组织与性能的影响。利用扫描电镜和X射线衍射仪检测了复合涂层的微观组织和物相; 采用显微硬度仪和摩擦磨损试验机分析了复合涂层的显微硬度与耐磨性。结果表明: Fe901涂层的组织以柱状枝晶和等轴枝晶为主, 添加的Al2O3可促使涂层组织转变为均匀的白色网状晶间组织及其包裹的细小黑色晶粒; 复合涂层中的Al2O3陶瓷颗粒表面发生微熔, 与Fe、Cr结合生成Fe3Al及(Al, Fe)4Cr金属间化合物, 起到增加Al2O3陶瓷颗粒与金属黏结相结合强度的作用; 当Al2O3陶瓷颗粒的质量分数为10%时, 复合涂层的显微硬度较Fe901涂层增加了16.4%, 复合涂层的摩擦磨损质量损失较Fe901涂层降低了50%; 添加适量的Al2O3陶瓷有助于提高涂层的显微硬度及耐磨性。

Abstract

Al2O3-reinforced Fe901 metal-ceramic composite coatings were prepared by laser cladding to improve the wear resistance of surface coating of metal materials. This study investigated the effect of Al2O3-reinforced phase on the microstructure and properties of a Fe-based cladding layer. The microstructural evolution, phase compositions, wear resistance, and microhardness of the composite coatings were studied using scanning electron microscopy, X-ray diffraction, friction and wear tester, as well as microhardness tester, respectively. The results show that the microstructure of the Fe901 coating was dominated by columnar and equiaxed dendrites. In addition, the addition of Al2O3 promoted the transformation of microstructure into a uniformly distributed white network-like intergranular structure with wrapped fine black grains. The surface of Al2O3 ceramic particles micro-melted and combined with Fe and Cr to form Fe3Al and (Al, Fe)4Cr intermetallic compounds within the composite coating, which increased the bond strength between Al2O3 ceramic particles and the metal phase. When the mass fraction of Al2O3 ceramic particles is 10%, the microhardness of the composite coating is increased by 16.4%, and the mass loss in the composite coating is reduced by 50% compared to that of the Fe901 coating. Thus, adding an adequate amount of Al2O3 ceramics can improve the microhardness and wear resistance of coatings.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG146

DOI:10.3788/aos201939.0514001

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51875265)、国家重点研发计划(2017YFB1103603)、江苏省普通高校学术学位研究生科研创新计划(KYZZ16_0330)

收稿日期:2018-12-03

修改稿日期:2019-01-07

网络出版日期:2019-01-23

作者单位    点击查看

周建忠:江苏大学机械工程学院, 江苏 镇江 212013
何文渊:江苏大学机械工程学院, 江苏 镇江 212013
徐家乐:江苏大学机械工程学院, 江苏 镇江 212013
谭文胜:常州信息职业技术学院机电工程学院, 江苏 常州 213164
孟宪凯:江苏大学机械工程学院, 江苏 镇江 212013
黄舒:江苏大学机械工程学院, 江苏 镇江 212013
聂学武:江苏大学机械工程学院, 江苏 镇江 212013

联系人作者:周建忠(zhoujz@ujs.edu.cn)

【1】Li C, Liu H X, Zhang X W, et al. Microstructure and property of Co-based carbide composite coating fabricated by laser cladding on 40Cr tool steel surface[J]. Chinese Journal of Lasers, 2015, 42(11): 1103002.
李闯, 刘洪喜, 张晓伟, 等. 40Cr刀具钢表面激光熔覆钴基碳化物复合涂层的组织与性能[J]. 中国激光, 2015, 42(11): 1103002.

【2】Zhang J, Tan M G, Liu H L, et al. Effects of wear-ring abrasion on hydraulic characteristic and internal flow field of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(10): 849-855.
张景, 谈明高, 刘厚林, 等. 密封口环磨损对离心泵外特性及内流场的影响[J]. 排灌机械工程学报, 2017, 35(10): 849-855.

【3】Xu J L, Zhou J Z, Tan W S, et al. Ultrasonic vibration on wear property of laser cladding Fe-based coating[J/OL]. Surface Engineering, 2018[2018-05-21]. https://www.tandfonline.com/doi/full/10.1080/02670844.2018.1475102.

【4】Ma G Y, Yan S, Wu D J, et al. Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating[J]. Ceramics International, 2017, 43(13): 9622-9629.

【5】Betts J C,Mordike B L, Grech M. Characterisation, wear and corrosion testing of laser-deposited AISI 316 reinforced with ceramic particles[J]. Surface Engineering, 2010, 26(1/2): 21-29.

【6】Jin Y, Li B, Zhang X, et al. Deposition behavior and electrochemical failure mechanism of WC/SS316L metal matrix composites prepared by supersonic laser deposition[J]. Chinese Journal of Lasers, 2018, 45(1): 0102001.
金琰, 李波, 张欣, 等. 金属基复合材料WC/SS316L超音速激光沉积行为及电化学失效机理[J]. 中国激光, 2018, 45(1): 0102001.

【7】Mertens A,L′Hoest T, Magnien J, et al. On the elaboration of metal-ceramic composite coatings by laser cladding[J]. Materials Science Forum, 2016, 879: 1288-1293.

【8】Zhou S F, Zeng X Y, Hu Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255(5): 1646-1653.

【9】Qiao H, Li Q T, Fu H G, et al. Microstructure and micro-hardness of in situ synthesized TiC particles reinforced Fe-based alloy composite coating by laser cladding[J]. Materialwissenschaft Und Werkstofftechnik, 2014, 45(2): 85-90.

【10】Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 2016, 43(1): 0103004.
段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究[J]. 中国激光, 2016, 43(1): 0103004.

【11】Li M X, He Y Z, Sun G X. Laser cladding Co-based alloy/SiCp composite coatings on IF steel[J]. Materials & Design, 2004, 25(4): 355-358.

【12】Xiong Z, Shao G Q, Duan X L, et al. Preparation and properties of Al2O3/WC-Co cermet[J]. Rare Metal Materials and Engineering, 2006, 35(z1): 79-82.
熊震, 邵刚勤, 段兴龙, 等. Al2O3/WC-Co金属陶瓷的制备与性能研究[J]. 稀有金属材料与工程, 2006, 35(z1): 79-82.

【13】Li B, Yao J H, Zhang Q L, et al. Microstructure and tribological performance of tungsten carbide reinforced stainless steel composite coatings by supersonic laser deposition[J]. Surface and Coatings Technology, 2015, 275: 58-68.

【14】Ren C, Li Z G, Shu D, et al. Microstructure and water erosion resistance property of Stellite6 coating by laser cladding on 17-4PH stainless steel surface[J]. Chinese Journal of Lasers, 2017, 44(4): 0402010.
任超, 李铸国, 疏达, 等. 17-4PH不锈钢表面激光熔覆Stellite6涂层组织及耐水蚀性能[J]. 中国激光, 2017, 44(4): 0402010.

【15】Zeng X Y, Tao Z Y, Zhu B D, et al. Investigation of laser cladding ceramic-metal composite coatings: processing modes and mechanisms[J]. Surface and Coatings Technology, 1996, 79(1): 209-217.

【16】Li Q G, Wu C, Wang Z. Mechanical properties and microstructures of Nano-Al2O3, particles reinforced Al2O3/AlN composite[J]. Journal of Alloys and Compounds, 2015, 636: 20-23.

【17】Tan H, Luo Z, Li Y, et al. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis[J]. Optics & Laser Technology, 2015, 68: 11-17.

【18】Guo C, Chen J M, Zhou J S, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J]. Surface and Coatings Technology, 2012, 206(8): 2064-2071.

【19】Zhang H, Zou Y, Zou Z D, et al. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder[J]. Optics & Laser Technology, 2015, 65(12): 119-125.

【20】Wang X H, Song S L, Qu S Y, et al. Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process[J]. Surface and Coatings Technology, 2007, 201(12): 5899-5905.

引用该论文

Zhou Jianzhong,He Wenyuan,Xu Jiale,Tan Wensheng,Meng Xiankai,Huang Shu,Nie Xuewu. Strengthening Mechanism and Wear Resistance of Al2O3/Fe901 Composite Coating Prepared by Laser Cladding[J]. Acta Optica Sinica, 2019, 39(5): 0514001

周建忠,何文渊,徐家乐,谭文胜,孟宪凯,黄舒,聂学武. 激光熔覆Al2O3/Fe901复合涂层的强化机制及耐磨性[J]. 光学学报, 2019, 39(5): 0514001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF