首页 > 论文 > 光学学报 > 39卷 > 5期(pp:531001--1)

W/SiO2基太阳光谱选择性吸收薄膜的制备和表征

Preparation and Characterization of Solar-Selective Absorbers Based on Multilayered W/SiO2 Thin Films

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用磁控溅射镀膜仪制备了基于过渡金属W和介质SiO2的6层薄膜样品, 膜系结构为Cu (>100.0 nm)/SiO2(63.5 nm)/W(11.0 nm)/SiO2(60.0 nm)/W(5.4 nm)/SiO2(75.5 nm)。在250~2500 nm的波长范围内, 该样品的太阳光吸收率为95.3%, 且在400 ℃低真空(6 Pa)条件下退火72 h之后, 样品的反射光谱特性变化较小, 证明了该样品具有极高的热稳定性。使用红外热成像仪对样品的红外辐射特性进行了在位实时表征, 结果表明样品具有低辐射特性。这些优良的特性有利于该样品在太阳能光热转换中的应用。

Abstract

A six-layer thin-film sample constructed from the transition metal W and dielectric material SiO2 is prepared through the magnetron sputtering apparatus. The microstructure of the film is Cu(>100.0 nm)/SiO2(63.5 nm)/W(11.0 nm)/SiO2(60.0 nm))/W(5.4 nm)/SiO2(75.5 nm). The fabricated sample has a solar absorptance of 95.3% in the wavelength range of 250-2500 nm. Under the low vacuum (6 Pa) condition, the reflectance characteristics of the sample after annealing at 400 ℃ for 72 h show no obvious change, which proves that the sample has an excellent thermal stability. In addition, an infrared thermal imager is adopted for the real-time and in-situ characterization of the infrared radiation from the sample and it is proved that the sample has a low radiation characteristic. These unique properties imply that the sample is highly suited for its application in solar thermal conversion.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O484.4

DOI:10.3788/aos201939.0531001

所属栏目:薄膜

基金项目:国家自然科学基金(61605089)、南京邮电大学引进人才科研启动基金(NY218107)

收稿日期:2018-12-14

修改稿日期:2019-01-04

网络出版日期:2019-01-23

作者单位    点击查看

郭帅:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
吴莹:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
古同:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
胡二涛:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023

联系人作者:胡二涛(iamethu@njupt.edu.cn)

【1】Cao F, McEnaney K, Chen G, et al. A review of cermet-based spectrally selective solar absorbers[J]. Energy & Environmental Science, 2014, 7(5): 1615-1627.

【2】Selvakumar N, Barshilia H C. Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications[J]. Solar Energy Materials and Solar Cells, 2012, 98: 1-23.

【3】Weinstein L A, Loomis J, Bhatia B, et al. Concentrating solar power[J]. Chemical Reviews, 2015, 115(23): 12797-12838.

【4】Zhang N, Wang C L, Liang F, et al. Characteristics of energy flux distribution of concentrating solar power systems[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120004.
张娜, 王成龙, 梁飞, 等. 聚光型太阳能热发电系统能流特性概述[J]. 激光与光电子学进展, 2018, 55(12): 120004.

【5】Yan S Y, Chang Z, Wang F, et al. Effect of dust accumulation on focal energy flux density distribution of trough solar concentrator and concentration optimization[J]. Acta Optica Sinica, 2017, 37(7): 0722002.
闫素英, 常征, 王峰, 等. 积尘对槽式太阳能聚光器焦面能流密度分布的影响及聚光优化[J]. 光学学报, 2017, 37(7): 0722002.

【6】Kraemer D, Jie Q, McEnaney K, et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%[J]. Nature Energy, 2016, 1(11): 16153.

【7】Bierman D M, Lenert A, Chan W R, et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping[J]. Nature Energy, 2016, 1(6): 16068.

【8】Zhou L, Tan Y L, Wang J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398.

【9】Bermel P, Lee J, Joannopoulos J D, et al. Selective solar absorbers[J]. Annual Review of Heat Transfer, 2012, 15(15): 231-254.

【10】Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.
朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.

【11】Fu X H, Guo K, Zhang J, et al. Strong absorption film of metal-dielectric interference of solar spectrum[J]. Chinese Journal of Lasers, 2017, 44(8): 0803002.
付秀华, 郭凯, 张静, 等. 太阳光谱金属-介质干涉型强吸收膜的研究[J]. 中国激光, 2017, 44(8): 0803002.

【12】Liu M H, Hu E T, Yao Y, et al. High efficiency of photon-to-heat conversion with a 6-layered metal/dielectric film structure in the 250-1200 nm wavelength region[J]. Optics Express, 2014, 22(S7): A1843-A1852.

【13】Sergeant N P, Pincon O, Agrawal M, et al. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks[J]. Optics Express, 2009, 17(25): 22800-22812.

【14】Hu E T, Guo S, Gu T, et al. Enhancement of solar absorption by a surface-roughened metal-dielectric film structure[J]. Japanese Journal of Applied Physics, 2017, 56(11): 112301.

【15】Hu E T, Liu X X, Yao Y, et al. Multilayered metal-dielectric film structure for highly efficient solar selective absorption[J]. Materials Research Express, 2018, 5(6): 066428.

【16】Zhang K, Hao L, Du M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1282-1299.

【17】Carlsson B, Mller K, Khl M, et al. Qualification test procedure for solar absorber surface durability[J]. Solar Energy Materials and Solar Cells, 2000, 61(3): 255-275.

【18】Kennedy C E. Review of mid- to high-temperature solar selective absorber materials[R]. [S.l.]: Office of Scientific and Technical Information (OSTI), 2002.

【19】Zhou W X, Shen Y, Hu E T, et al. Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability[J]. Optics Express, 2012, 20(27): 28953-28962.

【20】Chirumamilla M, Roberts A S, Ding F, et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications[J]. Optical Materials Express, 2016, 6(8): 2704-2714.

【21】Barshilia H C, Selvakumar N, Vignesh G, et al. Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings[J]. Solar Energy Materials and Solar Cells, 2009, 93(3): 315-323.

【22】Hu E T, Guo S, Gu T, et al. High efficient and wide-angle solar absorption with a multilayered metal-dielectric film structure[J]. Vacuum, 2017, 146: 194-199.

【23】Li X F, Chen Y R, Miao J, et al. High solar absorption of a multilayered thin film structure[J]. Optics Express, 2007, 15(4): 1907-1912.

【24】Valleti K, Murali Krishna D, Joshi S V. Functional multi-layer nitride coatings for high temperature solar selective applications[J]. Solar Energy Materials and Solar Cells, 2014, 121: 14-21.

【25】Feng J X, Zhang S, Liu X, et al. Solar selective absorbing coatings TiN/TiSiN/SiN prepared on stainless steel substrates[J]. Vacuum, 2015, 121: 135-141.

【26】Soum-Glaude A, Le Gal A, Bichotte M, et al. Optical characterization of TiAlNx /TiAlNy /Al2O3 tandem solar selective absorber coatings[J]. Solar Energy Materials and Solar Cells, 2017, 170: 254-262.

【27】Macleod H. Thin-film optical filters[M]. 4th ed. [S.l.]: CRC press: 2010.

【28】Palik E. Handbook of optical constants of solids[M]. [S.l.]: Academic Press, 1998.

【29】Kischkat J, Peters S, Gruska B, et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[J]. Applied Optics, 2012, 51(28): 6789-6798.

【30】Ordal M A, Bell R J, Alexander R W, et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J]. Applied Optics, 1988, 27(6): 1203.

【31】Hu E T, Cai Q Y, Zhang R J, et al. Effective method to study the thickness-dependent dielectric functions of nanometal thin film[J]. Optics Letters, 2016, 41(21): 4907.

引用该论文

Guo Shuai,Wu Ying,Gu Tong,Hu Ertao. Preparation and Characterization of Solar-Selective Absorbers Based on Multilayered W/SiO2 Thin Films[J]. Acta Optica Sinica, 2019, 39(5): 0531001

郭帅,吴莹,古同,胡二涛. W/SiO2基太阳光谱选择性吸收薄膜的制备和表征[J]. 光学学报, 2019, 39(5): 0531001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF