首页 > 论文 > 光学学报 > 39卷 > 5期(pp:512004--1)

CaF2光学微谐振腔中基于光热振荡的热耗散率测量

Measurement of Heat Dissipation Rate Based on Optic-Thermo Oscillations in CaF2 Optical Micro-Cavity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过测量光热振荡周期可以检测出CaF2光学微谐振腔腔体与环境之间的热耗散率, 然而多个振荡周期与热耗散率呈非线性关系, 无法利用某个振荡周期值有效测量热耗散率。使用一种基于反向传播人工神经网络的传感数据测量模型, 通过测量振荡周期值, 实现了热耗散率的有效测量, 优化了神经网络参数, 提高了热耗散率测量精度。数值仿真结果表明, 该方法可有效测量CaF2光学微谐振腔的热耗散率, 对实现基于光学微腔的热参量探测具有重要意义。

Abstract

The heat dissipation rate between a CaF2 optical micro-cavity bulk and the environment can be detected by measuring the thermo-optic oscillation period. However, there exists a nonlinear relation between the heat dissipation rate and multiple oscillation periods, and thus the heat dissipation rate cannot be effectively detected at a certain oscillation period. A sensing data measurement model based on the back-propagation artificial neural network was applied, and the heat dissipation rate was effectively measured by measuring the oscillation periods. The neural network parameters were optimized to improve the measurement accuracy of heat dissipation rate. The numerical simulation results demonstrate that the proposed method can effectively detect the heat dissipation rate in a CaF2 optical micro-cavity, which is essential for realizing thermal parameter sensing based on an optical micro-cavity.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN256

DOI:10.3788/aos201939.0512004

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(60907032,61675184,61675183)、浙江省自然科学基金(LY16F050009)、上海交通大学区域光纤通信网与新型光通信系统国家重点实验室开放基金(2016GZKF0JT004)

收稿日期:2018-12-15

修改稿日期:2019-01-07

网络出版日期:2019-01-25

作者单位    点击查看

郭栋:浙江工业大学信息工程学院, 浙江 杭州 310023
邹长铃:中国科学技术大学量子信息与量子科技前沿协同创新中心, 安徽 合肥 230026
任宏亮:浙江工业大学信息工程学院, 浙江 杭州 310023上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
卢瑾:浙江工业大学信息工程学院, 浙江 杭州 310023
覃亚丽:浙江工业大学信息工程学院, 浙江 杭州 310023
郭淑琴:浙江工业大学信息工程学院, 浙江 杭州 310023
胡卫生:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240

联系人作者:任宏亮(hlren@zjut.edu.cn)

【1】Garrett C G B, Kaiser W, Bond W L, et al. Stimulated emission into optical whispering modes of spheres[J]. Physical Review, 1961, 124(6): 1807-1809.

【2】Wei B, Dai T G, Wang G C, et al. High-sensitivity photonic current sensor based on Si dual-ring resonator[J]. Journal of Optoelectronics·Laser, 2017, 28(2): 128-132.
魏兵, 戴庭舸, 王根成, 等. 基于硅基双微环谐振腔的高灵敏度电流传感器[J]. 光电子·激光, 2017, 28(2): 128-132.

【3】Bu T R, Chen Y, He P C, et al. The transducer sensitivity of racetrack optical micro-ring resonator with feedback[J]. Acta Photonica Sinica, 2014, 43(8): 0823005.
卜天容, 陈曜, 何鹏程, 等. 反馈式跑道型光学微环的传感灵敏度研究[J]. 光子学报, 2014, 43(8): 0823005.

【4】Guo S L, Hu C H, Li X, et al. A novel high sensitivity optical microresonator humidity sensor[J]. Chinese Journal of Luminescence, 2014, 35(8): 1009-1013.
郭士亮, 胡春海, 李欣, 等. 一种新型高灵敏度光学微环湿度传感器[J]. 发光学报, 2014, 35(8): 1009-1013.

【5】Xie X J. A microwave displacement sensor based on resonant cavity structure[J]. Transducer and Microsystem Technology, 2015, 34(6): 98-101.
谢兴娟. 一种基于谐振腔结构的微波位移传感器[J]. 传感器与微系统, 2015, 34(6): 98-101.

【6】Liu Y M, Tian W J, Liu J H, et al. Research on the optic-fiber sensor suitable for deflection measurement of silicon micromechanical resonators[J]. Acta Photonica Sinica, 2003, 32(10): 1216-1219.
刘月明, 田维坚, 刘君华, 等. 适用于硅微谐振器件测量的光纤位移传感器研究[J]. 光子学报, 2003, 32(10): 1216-1219.

【7】Wu G Z, Tan Q L, Tang S, et al. Pressure transducer based on substrate intergrated waveguide and evanescent mode resonator[J]. Chinese Journal of Sensors and Actuators, 2017, 30(1): 44-47.
伍国柱, 谭秋林, 唐顺, 等. 基于基片集成波导和消逝模谐振腔的压力传感器设计[J]. 传感技术学报, 2017, 30(1): 44-47.

【8】Lu T, Yang L, van Loon R V A, et al. On-chip green silica upconversion microlaser[J]. Optics Letters, 2009, 34(4): 482-484.

【9】Liu Y, Tong X G, Yu J L, et al. All-optical switching in silicon-on-insulator serially coupled double-ring resonator based on thermal nonlinear effect[J]. Chinese Journal of Lasers, 2013, 40(2): 0205006.
刘毅, 仝晓刚, 于晋龙, 等. 基于热非线性效应的硅基串联双微环谐振腔全光开关[J]. 中国激光, 2013, 40(2): 0205006.

【10】Wu D N, Wu Y D, Wang Y, et al. Research on tunable filter based on micro-ring resonators[J]. Acta Optica Sinica, 2016, 36(1): 0123002.
吴丹宁, 吴远大, 王玥, 等. 基于微环谐振腔的可调谐滤波器的研究[J]. 光学学报, 2016, 36(1): 0123002.

【11】Yun B F, Hu G H, Cui Y P. Polymermicro-ring resonator filter with high quality factor[J]. Acta Optica Sinica, 2011, 31(10): 1013002.
恽斌峰, 胡国华, 崔一平. 高品质因子聚合物波导微环谐振腔滤波器[J]. 光学学报, 2011, 31(10): 1013002.

【12】Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode[J]. Proceedings of the National Academy of Sciences, 2008, 105(52): 20701-20704.

【13】Wang J W. Silicon-based nano-waveguides/devices and their application for optical sensing[D]. Hangzhou: Zhejiang University, 2011: 5-7.
王剑威. 硅基纳米光波导与器件及光传感应用研究[D]. 杭州: 浙江大学, 2011: 5-7.

【14】Lu T, Lee H, Chen T, et al. High sensitivity nanoparticle detection using optical microcavities[J]. Proceedings of the National Academy of Sciences, 2011, 108(15): 5976-5979.

【15】Jiang X X, Ye J J, Zou J, et al. Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode[J]. Optics Letters, 2013, 38(8): 1349-1351.

【16】Dantham V R, Holler S, Barbre C, et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity[J]. Nano Letters, 2013, 13(7): 3347-3351.

【17】Lipka T, Amthor J, Müller J. On-chip sensing with high-Q amorphous silicon microdisk resonators[J]. Proceedings of SPIE, 2013, 8879: 88790A.

【18】Cui N D, Kou J T, Liang J Q, et al. Athermal biosensor based on three waveguide micro-ring resonators[J]. Chinese Optics, 2014, 7(3): 428-434.
崔乃迪, 寇婕婷, 梁静秋, 等. 三环型波导微环谐振器无热化生物传感器[J]. 中国光学, 2014, 7(3): 428-434.

【19】Dong Y C, Wang K Y, Jin X Y. Packaged microsphere-taper coupling system with a high Q factor[J]. Applied Optics, 2015, 54(2): 277-284.

【20】Wondimu S F, Hippler M, Hussal C, et al. Robust label-free biosensing using microdisk laser arrays with on-chip references[J]. Optics Express, 2018, 26(3): 3161-3173.

【21】Suret P, Lefranc M, Derozier D, et al. Periodic mode hopping induced by thermo-optic effects in continuous-wave optical parametric oscillators[J]. Optics Letters, 2001, 26(18): 1415-1417.

【22】Ramiro-Manzano F, Prtljaga N, Pavesi L, et al. Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator[J]. Optics Letters, 2013, 38(18): 3562.

【23】Shi L L, Zhu T, Huang D M, et al. Electrical thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator[C]∥15th International Conference on Optical Communications and Networks (ICOCN), Sept. 24-27, 2016, Hangzhou, China. New York: IEEE, 2016: 1-3.

【24】Huang D M, Huang W, Zeng J, et al. Electrical thermo-optic tuning of whispering gallery mode microtube resonator[J]. IEEE Photonics Technology Letters, 2017, 29(1): 169-172.

【25】Chen S W, Zhang L B. Thermo-optical nonlinear behaviors in silicon microring resonator integrated with carrier control PN junction[C]∥OSA Technical Digest (online), July 17-21, 2017, Waikoloa, Hawaii, USA. Washington D C: Optical Society of America, 2017: NW4A.6.

【26】Abdollahi S, Van V. Analysis of optical instability in coupled microring resonators[J]. Journal of the Optical Society of America B, 2014, 31(12): 3081-3087.

【27】Fomin A E, Gorodetsky M L, Grudinin I S, et al. Nonstationary nonlinear effects in optical microspheres[J]. Journal of the Optical Society of America B, 2005, 22(2): 459-465.

【28】Jacinto C, Catunda T, Jaque D, et al. Thermal lens and heat generation of Nd∶YAG lasers operating at 1.064 and 1.34 μm[J]. Optics Express, 2008, 16(9): 6317-6323.

【29】Grudinin I S, Vahala K J. Thermal instability of a compound resonator[J]. Optics Express, 2009, 17(16): 14088-14097.

【30】Tong X G, Liu J, Xue C Y. Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator[J]. Optics Communications, 2017, 395: 207-211.

【31】Lin Q, Painter O J, Agrawal G P. Nonlinear optical phenomena in silicon waveguides: modeling and applications[J]. Optics Express, 2007, 15(25): 16604-16643.

【32】Shang C L, Tang J, Pi H L, et al. Temperature coefficient of high-Q microsphere cavity[J]. Chinese Journal of Lasers, 2015, 42(3): 0302005.
商成龙, 唐军, 皮海龙, 等. 高Q值光学微球腔的温度系数研究[J]. 中国激光, 2015, 42(3): 0302005.

【33】Park Y S, Wang H L. Regenerative pulsation in silica microspheres[J]. Optics Letters, 2007, 32(21): 3104-3106.

【34】Deng Y, Flores-Flores R, Jain R K, et al. Thermo-optomechanical oscillations in high-Q ZBLAN microspheres[J]. Optics Letters, 2013, 38(21): 4413-4416.

【35】Chen S W, Zhang L B, Fei Y H, et al. Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects[J]. Optics Express, 2012, 20(7): 7454-7468.

【36】Pernice W H P, Li M, Tang H X. Time-domain measurement of optical transport in silicon micro-ring resonators[J]. Optics Express, 2010, 18(17): 18438-18452.

【37】Diallo S, Lin G, Chembo Y K. Nonlinear thermo-optical oscillations in whispering gallery mode resonators[C]∥Conference on Lasers and Electro-Optics OSA Technical Digest (online), June 5-10, 2016. San Jose, California, USA. Washington D C: Optical Society of America, 2016: JW2A. 52.

【38】Abrams D M, Slawik A, Srinivasan K. Nonlinear oscillations and bifurcations in silicon photonic microresonators[J]. Physical Review Letters, 2014, 112(12): 123901.

【39】Sun X, Liang H X, Luo R, et al. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators[J]. Optics Express, 2017, 25(12): 13504-13516.

【40】Wang J, Zhu B W, Hao Z Z, et al. Thermo-optic effects in on-chip lithium niobate microdisk resonators[J]. Optics Express, 2016, 24(19): 21869-21879.

【41】Diallo S, Lin G P, Chembo Y K, et al. Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators[J]. Optics Letters, 2015, 40(16): 3834-3837.

【42】Baker C, Stapfner S, Parrain D, et al. Optical instability and self-pulsing in silicon nitride whispering gallery resonators[J]. Optics Express, 2012, 20(27): 29076-29089.

【43】Deng Y, Liu F F, Leseman Z C et al. Thermo-optomechanical oscillator for sensing applications[J]. Optics Express, 2013, 21(4): 4653-4664.

【44】He L N, Xiao Y F, Zhu J G, et al. Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators[J]. Optics Express, 2009, 17(12): 9571-9581.

【45】Weng W L, Anstie J D, Abbott P, et al. Stabilization of a dynamically unstable opto-thermo-mechanical oscillator[J]. Physical Review A, 2015, 91(6): 063801.

【46】Itobe H, Nakagawa Y, Mizumoto Y, et al. Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization[J]. AIP Advances, 2016, 6(5): 055116.

【47】Fong K Y, Poot M, Han X, et al. Phase noise of self-sustained optomechanical oscillators[J]. Physical Review A, 2014, 90(2): 023825.

【48】Chen W J, Zhu J G, Ozdemir S K, et al. A simple method for characterizing and engineering thermal relaxation of an optical microcavity[J]. Applied Physics Letters, 2016, 109(6): 061103.

【49】Wang T, Liu X F, Hu Y Q, et al. Rapid and high precision measurement of opto-thermal relaxation with pump-probe method[J]. Science Bulletin, 2018, 63(5): 287-292.

【50】Zahavy T, Dikopoltsev A, Moss D, et al. Deep learning reconstruction of ultrashort pulses[J]. Optica, 2018, 5(5): 666-673.

引用该论文

Guo Dong,Zou Changling,Ren Hongliang,Lu Jin,Qin Yali,Guo Shuqin,Hu Weisheng. Measurement of Heat Dissipation Rate Based on Optic-Thermo Oscillations in CaF2 Optical Micro-Cavity[J]. Acta Optica Sinica, 2019, 39(5): 0512004

郭栋,邹长铃,任宏亮,卢瑾,覃亚丽,郭淑琴,胡卫生. CaF2光学微谐振腔中基于光热振荡的热耗散率测量[J]. 光学学报, 2019, 39(5): 0512004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF