首页 > 论文 > 光学学报 > 39卷 > 5期(pp:523003--1)

基于Spiro-OMeTAD电子阻挡层的量子点发光二极管电荷平衡改善

Improved Charge Balance of Quantum Dot Light-Emitting Diodes via Spiro-OMeTAD Electron Blocking Layer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对量子点发光二极管空穴传输层和电子传输层的迁移率差异而导致的电荷不平衡问题, 将具有最低未占分子轨道高能级的有机聚合物Spiro-OMeTAD薄膜放置在空穴传输层与量子点发光层之间, 阻挡过剩电子由量子点发光层向空穴传输层的传输, 促进器件的电荷平衡, 制备出一种高效的新型绿色量子点发光二极管。结果表明:相比于传统器件, 新型绿色量子点发光二极管器件的外部量子效率提升了87%, 达到11.87%, 亮度提升了106%, 达到53055 cd/m2; 阻挡过剩电子的传输可以显著改善器件中的电荷不平衡现象。

Abstract

A charge imbalance often occurs in quantum dot light-emitting diodes (QLEDs) owing to the difference in migration rate between the hole transport layer (HTL) and the electron transport layer. In this study, we inserted a Spiro-OMeTAD thin film, an organic polymer with a high lowest unoccupied molecular orbital energy level, between the HTL and quantum dot emission layer to block the transmission of excess electrons from the quantum dot luminescence layer to the HTL, which promotes the charge balance of the device, and thus a highly efficient new green QLED is fabricated. The results show that the new green QLED exhibits distinct improvements over the traditional devices, with an 87% improvement in external quantum efficiency up to 11.87%, and a 106% increase in brightness up to 53055 cd/m2. This proves that blocking the transmission of excess electrons can significantly solve the charge imbalance problem in QLEDs.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:D510.3030

DOI:10.3788/aos201939.0523003

所属栏目:光学器件

基金项目:国家自然科学基金(61765011, 21564009, 11774141)、江西省自然科学基金(20181BBE58005, 20181BAB202028, 20181BAB201016, 20161BABA206112, 20161BAB206112)、福建省自然科学基金(2016J01322)、福建省教育厅基金(JAT160351)

收稿日期:2018-12-20

修改稿日期:2019-01-04

网络出版日期:2019-01-21

作者单位    点击查看

张文静:南昌航空大学测试与光电工程学院, 江西 南昌 330063
张芹:南昌航空大学测试与光电工程学院, 江西 南昌 330063
杨亮:厦门理工学院材料科学与工程学院福建省功能材料及应用重点实验室, 福建 厦门 361024
江莹:南昌航空大学测试与光电工程学院, 江西 南昌 330063
常春:南昌航空大学测试与光电工程学院, 江西 南昌 330063
金肖:南昌航空大学测试与光电工程学院, 江西 南昌 330063
李凤:南昌航空大学测试与光电工程学院, 江西 南昌 330063
黄彦:南昌航空大学测试与光电工程学院, 江西 南昌 330063
李清华:南昌航空大学测试与光电工程学院, 江西 南昌 330063

联系人作者:张芹(zhangqin0066@163.com); 李清华(qhli@hqu.edu.cn);

【1】Li F, Guo C Y, Pan R, et al. Integration of green CuInS2/ZnS quantum dots for high-efficiency light-emitting diodes and high-responsivity photodetectors[J]. Optical Materials Express, 2018, 8(2): 314.

【2】Chen W B, Ye J X, Ma H, et al. Structural properties of QLED based on hybrid quantum dots[J]. Chinese Journal of Luminescence, 2017, 38(8): 1076-1082.
陈雯柏, 叶继兴, 马航, 等. 混合量子点QLED结构性能研究[J]. 发光学报, 2017, 38(8): 1076-1082.

【3】Cho K S, Lee E K, Joo W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nature Photonics, 2009, 3(6): 341-345.

【4】Jiang C B, Liu H M, Liu B Q, et al. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers[J]. Organic Electronics, 2016, 31: 82-89.

【5】Peng H R, Chen S M, Wang Y. Quantum dot light-emitting diodes with mixed polymer-quantum dots light-emitting layer[J]. Chinese Journal of Luminescence, 2016, 37(3): 299-304.
彭辉仁, 陈树明, 王忆. 基于聚合物-量子点共混的量子点发光二极管[J]. 发光学报, 2016, 37(3): 299-304.

【6】Jin X, Chang C, Zhao W F, et al. Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15803-15811.

【7】Bae W K, Kwak J, Lim J, et al. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method[J]. Nano Letters, 2010, 10(7): 2368-2373

【8】Wang L S, Lin J, Hu Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38755-38760.

【9】Zhang Q, Gu X B, Zhang Q S, et al. ZnMgO∶ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes[J]. Optical Materials Express, 2018, 8(4): 909-918.

【10】Ma H, Li D H, Chen W B, et al. Quantum dot light emitting diodes with ZnO electron transport layer[J]. Chinese Journal of Luminescence, 2017, 38(4): 507-513.
马航, 李邓化, 陈雯柏, 等. 氧化锌作为电子传输层的量子点发光二极管[J]. 发光学报, 2017, 38(4): 507-513.

【11】Kim S, Kim T, Kang M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes[J]. Journal of the American Chemical Society, 2012, 134(8): 3804-3809.

【12】Li X M, Wu Y, Zhang S L, et al. Quantum dots: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Advanced Functional Materials, 2016, 26(15): 2584.

【13】Song B. Deep-red to near-infrared CdTe/CdSe core/shell quantum dots: synthesis and application in light-emitting diodes[D]. Kaifeng: Henan University, 2017.
宋斌. 深红—近红外CdTe/CdSe核壳结构量子点合成及其在QLED中应用[D]. 开封: 河南大学, 2017.

【14】Klimov V I. Quantization of multiparticle auger rates in semiconductor quantum dots[J]. Science, 2000, 287(5455): 1011-1013.

【15】Woo W K, Shimizu K T, Jarosz M V,et al. Reversible charging of CdSe nanocrystals in a simple solid-state device[J]. Advanced Materials, 2002, 14(15): 1068-1071.

【16】Kim H H, Park S, Yi Y, et al. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO[J]. Scientific Reports, 2015, 5: 8968-8972.

【17】Zhang H, Sui N, Chi X C, et al. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31385-31391.

【18】Dai X L, Zhang Z X, Jin Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99.

【19】Liu S Y, Ho S, Chen Y, et al. Passivation of metal oxide surfaces for high-performance organic and hybrid optoelectronic devices[J]. Chemistry of Materials, 2015, 27(7): 2532-2539.

【20】Kim H M, bin Mohd Yusoff A R, Youn J H, et al. Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness[J]. Journal of Materials Chemistry C, 2013, 1(25): 3924-3930.

【21】Kirkwood N, Singh B, Mulvaney P. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer[J]. Advanced Materials Interfaces, 2016, 3(22): 1600868-1600874.

【22】Fabregat-Santiago F, Bisquert J, Palomares E, et al. Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor[J]. Journal of Applied Physics, 2006, 100(3): 034510-034516.

【23】Lee J, Menamparambath M M, Hwang J Y, et al. Hierarchically structured hole transport layers of spiro-OMeTAD and multiwalled carbon nanotubes for perovskite solar cells[J]. ChemSusChem, 2015, 8(14): 2358-2362.

【24】Chen C H, Hsu L C, Rajamalli P, et al. Highly efficient orange and deep-red organic light emitting diodes with long operational lifetimes using carbazole-quinoline based bipolar host materials[J]. Joumal of Materials Chemistry C, 2014, 2: 6183-6191.

引用该论文

Zhang Wenjing,Zhang Qin,Yang Liang,Jiang Ying,Chang Chun,Jin Xiao,Li Feng,Huang Yan,Li Qinghua. Improved Charge Balance of Quantum Dot Light-Emitting Diodes via Spiro-OMeTAD Electron Blocking Layer[J]. Acta Optica Sinica, 2019, 39(5): 0523003

张文静,张芹,杨亮,江莹,常春,金肖,李凤,黄彦,李清华. 基于Spiro-OMeTAD电子阻挡层的量子点发光二极管电荷平衡改善[J]. 光学学报, 2019, 39(5): 0523003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF