Photonics Research, 2019, 7 (5): 05000518, Published Online: Apr. 15, 2019  

Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy Download: 568次

Author Affiliations
1 State Key Laboratory of Solidification Processing, Ministry of Industry and Information Technology (MIIT) Key Laboratory of Radiation Detection Materials and Devices, School of Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2 Institute of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria
Abstract
In this work, a model based on the optical rectification effect and the photocurrent surge effect is proposed to describe the terahertz emission mechanism of the layered GaTe crystal. As a centrosymmetric crystal, the optical rectification effect arises from the breaking of the inversion symmetry due to lattice reorganization of the crystal’s surface layer. In addition, the photocurrent surge originating from the unidirectional charge carrier diffusion—due to the noncubic mobility anisotropy within the layers—produces terahertz radiation. This is confirmed by both terahertz emission spectroscopy and electric property characterization. The current surge perpendicular to the layers also makes an important contribution to the terahertz radiation, which is consistent with its incident angle dependence. Based on our results, we infer that the contribution of optical rectification changes from 90% under normal incidence to 23% under a 40° incidence angle. The results not only demonstrate the terahertz radiation properties of layered GaTe bulk crystals, but also promise the potential application of terahertz emission spectroscopy for characterizing the surface properties of layered materials.

Jiangpeng Dong, Kevin-P. Gradwohl, Yadong Xu, Tao Wang, Binbin Zhang, Bao Xiao, Christian Teichert, Wanqi Jie. Terahertz emission from layered GaTe crystal due to surface lattice reorganization and in-plane noncubic mobility anisotropy[J]. Photonics Research, 2019, 7(5): 05000518.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!