Photonics Research, 2019, 7 (5): 05000526, Published Online: Apr. 15, 2019   

Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy Download: 517次

Author Affiliations
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 MOE Key Laboratory of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044, China
3 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
4 e-mail: ting.mei@ieee.org
Abstract
The synergy of a plasmonic tip and fiber-based structure light field excitation can provide a powerful tool for Raman examination. Here, we present a method of Raman spectrum enhancement with an Ag-nanoparticles (Ag-NPs)-coated fiber probe internally excited via an azimuthal vector beam (AVB), which is directly generated in a few-mode fiber by using an acoustically induced fiber grating. Theoretical analysis shows that gap mode can be effectively generated on the surface of the Ag-NPs-coated fiber probe excited via an AVB. The experimental result shows that the intensity of Raman signal obtained with analyte molecules of malachite green by exciting the Ag-NPs-coated fiber probe via an AVB is approximately eight times as strong as that via the linear polarization beam (LPB), and the activity of the AVB-excited fiber probe can reach 10 11 mol/L, which cannot be achieved by LPB excitation. Moreover, the time stability and reliability are also examined, respectively.

Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, Jianlin Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(5): 05000526.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!