首页 > 论文 > 红外与毫米波学报 > 38卷 > 2期(pp:160-164)

一种新型基于MIM等离子体环形谐振器的可调谐高性能多信道波分解复用器的设计

A new design of tunable high performance multi-channel optical demultiplexer based on MIM plasmonic ring resonators at telecommunication wavelengths

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计并研究了基于金属-介质-金属等离子体环形谐振器的可调谐高性能多通道波分解复用器。通过环形腔的谐振理论分析, 发现通过调节环形腔的半径和填充介质折射率可以很容易地控制波分复用器的信道波长, 与有限元法模拟得到的结果吻合得很好。由等离子体波导和多个环形谐振器组成的多信道WDM结构增加了在电信波长的传输率, 传输率高达80%, 比最近文献中报道的结果高出两倍。所设计的多信道波分解复用器在高集成电路中有重要潜在应用。

Abstract

The tunable high performance multi-channel wavelength demultiplexer (WDM) based on metal-insulator-metal (MIM) plasmonic ring resonators is designed and numerically investigated. By the resonant theory of ring cavity, we find that the channel wavelength of WDM can be easily manipulated by adjusting the radius and refractive index of the ring cavity, which is in good agreement with the results obtained by finite element method (FEM) simulations. The multi-channel WDM structure consisting of a plasmonic waveguide and several ring resonators increases the transmission up to 80% at telecommunication regime, which is two times higher than the results reported in a recent literature. The proposed compact multi-channel wavelength demultiplexer can find more applications for the ultra-compact WDM systems in highly integrated telecommunication circuits.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O438

DOI:10.11972/j.issn.1001-9014.2019.02.006

基金项目:Supported by the Natural Science Foundation of Gansu Province, China(17JR5RA078), the Scientific Research Foundation of Northwest Normal University, China (CX2018Y167)

收稿日期:2018-05-10

修改稿日期:2018-12-12

网络出版日期:--

作者单位    点击查看

张雪伟:西北师范大学 物理与电子工程学院, 甘肃 兰州 730070
龚韩韩:西北师范大学 物理与电子工程学院, 甘肃 兰州 730070

联系人作者:ZHANG Xue-Wei(zhangxuewei2016@163.com)

备注:ZHANG Xue-Wei (1992-), male, Lanzhou, China, master. Research area involves nano optics and optical circuits.

【1】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950): 824-830.

【2】Zhang Q, Huang X G, Lin X S, et al. A subwavelength coupler-type MIM optical filter [J]. Opt. Express, 2009, 17(9): 7549-7554.

【3】Chen F, Yao D. Tunable multiple all-optical switch based on multi-nanoresonator-coupled waveguide systems containing Kerr material [J]. Opt. Commun., 2014, 312(4): 143-147.

【4】Wang C, Du C, Yao H, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels [J]. Opt. Express, 2005, 13(26): 10795-10800.

【5】Abadía N, Bernadin T, Chaisakul P, et al. Low-Power consumption Franz-Keldysh effect plasmonic modulator [J]. Opt. Express, 2014, 22(9): 11236-11243.

【6】Fan H, Charbonneau R, Berini P. Long-range surface plasmon triple-output Mach-Zehnder interferometers [J]. Opt. Express, 2014, 22(4): 4006-4020.

【7】Alam M Z, Caspers J N, Aitchison J S, et al. Compact low loss and broadband hybrid plasmonic directional coupler [J]. Opt. Express, 2013, 21(13): 16029-16034.

【8】Ayad M A, Obayya S S A, Swillam M A. Submicron 1xN ultra wideband MIM plasmonic power splitters [J]. J. Lightwave Technol., 2014, 32(9): 1814-1820.

【9】Ortegamoux A, Richter I, Schmid J H, et al. Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides [J]. Opt. Express, 2018,26(1): 179-194.

【10】Morozov Y M, Lapchuk A S, Fu M L, et al. Numerical analysis of end-fire coupling of surface plasmon polaritons in a metal-insulator-metal waveguide using a simple photoplastic connector [J]. Photonics Research, 2018, 6(3): 149-156.

【11】Chen J, Tao J, Zhang Q, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters [J]. J. Opt. Soc. Am.B, 2010, 27(2): 323-327.

【12】Liu D, Wang J, Zhang F, Pan, et al. Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators [J]. Sensors, 2017, 17(3): 585.

【13】Lu H, Liu X, Mao D, et al. Tunable band-pass plasmonic waveguide filters with nanodisk resonators [J]. Opt. Express, 2010, 18(17): 17922-17927.

【14】Kong Y, Lin R, Qian W, et al. Active dual-wavelength optical switch-based plasmonic demultiplexer using metal-kerr nonlinear material-metal waveguide [J]. IEEE Photonics Journal, 2017, 9(4): 4501908.

【15】Jeong M Y, Jin Y M, Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges [J]. Appl. Opt., 2018, 57(8): 1962-1966.

【16】Naglich E J, Guyette A C. Reflection-mode bandstop filters with minimum through-line length[J]. IEEE Trans. Microwave Theory & Tech., 2018, 63(10):3479-3486.

【17】Zhang H, Shen D, Zhang Y. Circular split-ring core resonators used in nanoscale metal-insulator-metal band-stop filters[J]. Laser Phy. Lett., 2014, 11(11):115902.

【18】Amini A, Aghili S, Golmohammadi S, et al. Design of microelectromechanically tunable metal-insulator-metal plasmonic band-pass/stop filter based on slit waveguides[J]. Opt. Commun., 2017, 403:226-233.

【19】Tao J, Huang X G, Zhu J H. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators[J]. Opt. Express, 2010, 18(11):11111-11116.

【20】Wang G, Lu H, Liu X, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt. Express, 2011, 19(4):3513-3518.

【21】Naghizade S, Sattariesfahlan S M. Tunable high performance 16-channel demultiplexer on 2D photonic crystal ring resonator operating at telecom wavelengths[J]. Journal of Optical Communications, 2018.

【22】Liu H, Gao Y, Zhu B, et al. A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators[J]. Opt. Commun., 2015, 334:164-169.

引用该论文

ZHANG Xue-Wei,GONG Han-Han. A new design of tunable high performance multi-channel optical demultiplexer based on MIM plasmonic ring resonators at telecommunication wavelengths[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 160-164

张雪伟,龚韩韩. 一种新型基于MIM等离子体环形谐振器的可调谐高性能多信道波分解复用器的设计[J]. 红外与毫米波学报, 2019, 38(2): 160-164

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF