首页 > 论文 > 红外与毫米波学报 > 38卷 > 2期(pp:188-194)

应用于微小卫星平台的太赫兹分频技术研究

Research on terahertz frequency division technique applied to microsatellite platform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于微小卫星组网编队技术, 气象预报工作在时间和空间分辨率方面得到大幅提升.为了完成微小卫星大气微波探测仪射频部分的频率分离功能, 采用体积小、插损小的波导双工器来实现.采用等效电路法和模式匹配法优化参数, 设计了一款166/183 GHz双工器.考虑到实际加工情况, 仿真过程中具体分析了膜片陡直度和膜片厚度对双工器性能的影响.加工过程中, 通过对器件分割方式和加工缺陷的分析, 不断优化加工方案, 最终得到满意的加工样品.经测试, 166/183 GHz双工器的带内插损小于1.5 dB, 回波损耗大于15 dB, 带外抑制高于27 dB以上, 仿真结果与实测结果相吻合, 证明了双工器设计方法的可行性.

Abstract

Based on the microsatellite constellation, meteorological forecast has been greatly improved in terms of temporal and spatial resolution. To separate the frequency in RF front-end system of the microsatellite atmospheric microwave sounder, a waveguide diplexer with compact size and low insertion loss is adopted. A 166/183 GHz diplexer was designed by using equivalent circuit method and mode-matching technology. According to the actual situation of machining, the effects of iris steepness and iris thickness on the performance of the diplexer are analyzed in the simulation. Through the analysis of the split-block realization and the machining defects, the way of machining is continuously optimized to obtain a satisfactory machining sample. The maximum measured insertion loss is 1.5 dB, the minimum measured return loss is 15 dB, and the measured out-band rejection is higher than 27 dB. The simulation results are consistent with the measured results, which proves that the diplexer design method is feasible.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN61

DOI:10.11972/j.issn.1001-9014.2019.02.011

基金项目:青年人才托举工程(2015QNRC001),“十三五”装备预研领域基金(6140136010116ZK24001)

收稿日期:2018-05-18

修改稿日期:2018-12-20

网络出版日期:--

作者单位    点击查看

王婧:中国科学院国家空间科学中心 微波遥感重点实验室,北京 100190中国科学院大学,北京 100190
张升伟:中国科学院国家空间科学中心 微波遥感重点实验室,北京 100190
孟进:中国科学院国家空间科学中心 微波遥感重点实验室,北京 100190

联系人作者:王婧(wangjingcoral@126.com)

备注:王婧(1990-), 女, 山西太原人, 博士研究生. 主要研究领域为微波遥感、太赫兹波导器件.E-mail:wangjingcoral@126.com

【1】Reising S C, Gaier T C, Padmanabhan S, et al. Microwave and millimeter-wave radiometers for CubeSat deployment for remote sensing of the earth''s atmosphere[C]. Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on. IEEE, 2014: 1-1.

【2】Selva D, Krejci D. A survey and assessment of the capabilities of Cubesats for Earth observation[J]. Acta Astronautica, 2012, 74:50-68.

【3】CUI Guang-Bin, MIAO Jun-Gang, ZHANG Yong-Fang. Design of waveguide array frequency selective surface filter in sub-millimeter wave band[J]. Acta Physics Sinica (崔广斌, 苗俊刚, 张勇芳. 亚毫米波段波导阵列结构频率选择性滤波器的设计. 物理学报), 2012, 61(22):224102-224102.

【4】CUI G B, ZHAO H B, ZHANG Yong-Fang, et al. A millimeter and sub-millimeter wave frequency selective surface beamsplitter for geostationary orbit microwave radiometers[J]. Chinese Physics B, 2012, 21(11):114101.

【5】ZHANG Yu, ZHANG Sheng-Wei, WANG Zhen-Zhan, et al. Technology development of atmospheric humidity sounding of FY-3 satellite[J]. Aerospace Shanghai (张瑜, 张升伟, 王振占, 等. FY-3卫星大气湿度微波探测技术发展. 上海航天), 2017, 34(4): 52-61.

【6】Salehi M R, Keyvan S, Abiri E, et al. Compact microstrip diplexer using new design of triangular open loop resonator for 4G wireless communication systems[J]. AEU-International Journal of Electronics and Communications, 2016, 70(7): 961-969.

【7】Wang Z, Lai J, Bu S, et al. A compact quasi-lumped LTCC diplexer for radar application[C]. Microwave and Millimeter Wave Technology (ICMMT), 2010 International Conference on. IEEE, 2010: 860-863.

【8】Deng H, Zhao Y, He Y, et al. Compact diplexer with slotline resonators for wideband and WLAN applications[J]. Microwave and Optical Technology Letters, 2014, 56(11):2480-2484.

【9】Feng W, Hong M, Che W. Microstrip diplexer design using open/shorted coupled lines[J]. Progress In Electromagnetics Research, 2016, 59:123-127.

【10】Sirci S, Martínez J D, Vague J, et al. Substrate integrated waveguide diplexer based on circular triplet combline filters[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(7):430-432.

【11】Skaik T F, Lancaster M J, Huang F. Synthesis of multiple output coupled resonator circuits using coupling matrix optimisation[J]. IET microwaves, antennas & propagation, 2011, 5(9):1081-1088.

【12】Reising S C, Gaier T C, Kummerow C D, et al. Overview of temporal experiment for storms and tropical systems (TEMPEST) CubeSat constellation mission[C]. Microwave Symposium (IMS), 2015 IEEE MTT-S International. IEEE, 2015:1-4.

【13】Skaik T, Lancaster M, Ke M, et al. A micromachined WR-3 band waveguide diplexer based on coupled resonator structures[C].Microwave Conference (EuMC), 2011 41st European. IEEE, 2011:770-773.

【14】WANG Jing, ZHANG Sheng-Wei, LUO Yang-Jin, et al. Development of terahertz waveguide diplexer[J]. J. Infrared Millim. Waves (王婧, 张升伟, 罗阳锦, 等. 太赫兹波导双工器研究. 红外与毫米波学报), 2018, 37(4): 493-500.

【15】Zappelli L. An equivalent circuit for thick centered irises in rectangular waveguide[C].Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 2014 International Conference on. IEEE, 2014:1-4.

【16】Alós E A, Zaman A U, Kildal P S. Ka-band gap waveguide coupled-resonator filter for radio link diplexer application[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(5):870-879.

【17】ZHAO Xing-Hai, SHAN Guang-Cun, ZHENG Ying-Bin, et al. MEMS rectangular waveguide filter at 140 GHz[J]. J. Infrared Millim. Waves (赵兴海, 单光存, 郑英彬, 等. 140 GHz MEMS 矩形波导滤波器. 红外与毫米波学报), 2013, 32(2): 165-169.

【18】Leal-Sevillano C A, Cooper K B, Ruiz-Cruz J A, et al. A 225 GHz circular polarization waveguide duplexer based on a septum orthomode transducer polarizer[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5):574-583.

【19】Yao H W, Abdelmonem A E, Liang J F, et al. Wide-band waveguide and ridge waveguide T-junctions for diplexer applications[J]. IEEE transactions on microwave theory and techniques, 1993, 41(12):2166-2173.

【20】Ofli E, Vahldieck R, Amari S. Novel E-plane filters and diplexers with elliptic response for millimeter-wave applications[J]. IEEE transactions on microwave theory and techniques, 2005, 53(3):843-851.

【21】DU Yi-Jia, BAO Jing-Fu, ZHAO Xing-Hai, et al. Terahertz micromachined waveguide filter[J]. Journal of Electronics & Information Technology (杜亦佳, 鲍景富, 赵兴海, 等. 太赫兹微加工波导滤波器. 电子与信息学报), 2012, 34(3): 728-732.

【22】Jastram N, Al-Tarifi M A, Boskovic L, et al. On the split-block realization of millimeter-wave ridge waveguide components[J]. IEEE Microwave and Wireless Components Letters, 2018.

引用该论文

WANG Jing,ZHANG Sheng-Wei,MENG Jin. Research on terahertz frequency division technique applied to microsatellite platform[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 188-194

王婧,张升伟,孟进. 应用于微小卫星平台的太赫兹分频技术研究[J]. 红外与毫米波学报, 2019, 38(2): 188-194

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF