首页 > 论文 > 光子学报 > 48卷 > 5期(pp:506002--1)

正色散光纤激光器中矩形耗散孤子与高斯光谱脉冲的切换锁模

Switchable Mode Locking of Rectangular Dissipative Soliton and Gaussian-spectrum Pulse in Normal Dispersion Fiber Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于单壁碳纳米管与非线性偏振旋转技术在锁模光纤激光器中仿真和实验观测到矩形耗散孤子与高斯光谱脉冲的切换锁模.矩形耗散孤子的光谱与脉冲宽度分别为~6.33 ps和~12.54 nm, 具有非常强的啁啾.适当地调节偏振控制器, 可以获得具有高斯型光谱和脉冲的锁模状态, 其光谱和脉冲宽度分别为~1.87 ps和~2.2 nm.高斯型光谱脉冲的时间带宽积为0.51, 几乎没有啁啾.不同锁模状态间的切换归因于偏振控制器导致的腔内偏振的改变.

Abstract

A switchable operation of rectangular dissipative soliton and Gaussian-spectrum pulse has been investigated experimentally in the mode-locked fiber laser using single-walled carbon nanotube and nonlinear polarization rotation technique. The rectangular dissipative soliton is strong chirped with the temporal and spectral width of ~6.33 ps and ~12.54 nm, respectively. By appropriately adjusting the polarization states, the Gaussian-spectrum state with ~1.87 ps duration and ~2.2 nm bandwidth is achieved. The time-bandwidth product of the Gaussian-spectrum pulse is 0.51, suggesting that the pulse is nearly chirp-free. The switching of different operations could be ascribed to the change of cavity polarizations relying on polarization controllers, which is also demonstrated by the simulation results.

中国激光微信矩阵
补充资料

中图分类号:TN242

DOI:10.3788/gzxb20194805.0506002

基金项目:The National Natural Science Foundation of China (Nos. 61805198, 61875165, 61775180, 61875164)

收稿日期:2019-01-02

修改稿日期:2019-03-14

网络出版日期:--

作者单位    点击查看

李静玲:西安邮电大学, 西安 710072
韩冬冬:西安邮电大学, 西安 710072
惠战强:西安邮电大学, 西安 710072
任凯利:西安邮电大学, 西安 710072
罗文峰:西安邮电大学, 西安 710072
姚英:西安邮电大学, 西安 710072
赵峰:西安邮电大学, 西安 710072
忻向军:西安邮电大学, 西安 710072北京邮电大学, 北京 100876
巩稼民:西安邮电大学, 西安 710072

联系人作者:李静玲(lijingling@163.com)

备注:LI Jing-ling (1979-), female, lecturer, M.S. degree, mainly focuses on fiber communication.

【1】MALINAUSKAS M, UKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Application, 2016, 5(8): e16133.

【2】LIU M L, WANG L R, SUN Q B, et al. Attosecond metrology: Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators[J]. Photonics Research, 2018, 6(4): 238-243.

【3】YAO X, LIU X. Beam dynamics in disordered PT-symmetric optical lattices based on eigenstate analyses[J].Physical Review A, 2017, 95: 033804.

【4】MAO D,FENG T, ZHANG W, et al. Ultrafast all-fiber based cylindrical-vector beam laser[J]. Applied Physics Letters, 2017, 110(2): 021107.

【5】CHEN H J, LIU M, YAO J, et al. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion [J]. Optics Express, 2018, 26(3): 2972-2982.

【6】LI M M, HOU L, LIN Q M, et al. Wide-spectrum all-normal-dispersion Yb-doped fiber laser[J]. Acta Photonica Sinica, 2017, 46(1): 0114002.

【7】KRZEMPEK K, SOBON G, KACZMAREK P, et al. A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser[J]. Laser Physics Letters, 2013, 10(10): 105103.

【8】ILDAY F , BUCKLEY J R, CLARK W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21): 213092.

【9】HAN D D, LIU X, CUI Y, et al. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser[J]. Optics Letters, 2014, 39(6): 1565-1568.

【10】BAO Q L, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

【11】YANG H. Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber[J]. Journal of Modern Optics, 2015, 63(17): 1363-1367.

【12】CHEN Y, JIANG G, CHEN S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

【13】CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide: current status and future perspectives[J]. Scientific Reports, 2017, 7: 40080.

【14】GUO B, WANG S H, WU Z X, et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber[J]. Optics Express, 2018, 26(18): 22750-22760.

【15】LI X, WU K, SUN Z, et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 25266.

【16】KOBTEV S, IVANEBKO A, GLADUSH Y, et al. Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film[J]. Optics Express, 2016, 24(25): 28768-28773.

【17】LIU X. Interaction and motion of solitons in passively-mode-locked fiber lasers[J].Physical Review A, 2011, 84(5): 053828.

【18】SOTOR J, BOGUSLAWSKI J, MARTYNKIEN T, et al. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a grapheme saturable absorber[J]. Optics Letters, 2017, 41(8): 1592-1595.

【19】ILDAY F O, BUCKLEY J R, CLARK W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21): 213902.

【20】PENG J S, SOROKINA M, SUGAVANAMS, et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode locked fibre lasers[J]. Communications Physics, 2018, 1: 20.

【21】SHAO G, SONG Y, ZHAO L, et al. Vector gain-guided dissipative solitons in a net normal dispersive fiber laser[J]. IEEE Photonics Technology Letters, 2016, 28(9): 975-978.

【22】ZHAO G, LIN W, CHEN H, et al. Dissipative soliton resonance in Bismuth-doped fiber laser[J]. Optics Express, 2017, 25(17): 20923-20931.

【23】YUN L, ZHAO W. Nanotube mode locked, wavelength-tunable, conventional and dissipative solitons fiber laser[J].Optics Communications, 2018, 406(1): 205-208.

【24】WANG L R, LIU X M, GONG Y K. Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers[J].Laser Physics Letters, 2010, 7(1): 63-67.

【25】LIU X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser[J]. Physical Review A, 2010, 81(2): 023811.

【26】BABIN S A, PODIVILOV E V, KHARENKO D S, et al. Multicolour nonlinearly bound chirped dissipative solitons[J]. Nature Communications, 2014, 5: 4653.

【27】LYU Y, ZOU X, SHI H, et al. Multipulse dynamics under dissipative soliton resonance conditions[J]. Optics Express, 2017, 25(12): 13286-13295.

【28】WANG L R, LIU X M, GONG Y K, et al. Observations of four types of pulses in a fiber laser with large net-normal dispersion [J]. Optics Express, 2011, 19(8): 7616-7624.

【29】HAN D D. Experimental and theoretical investigations of a tunable dissipative soliton fiber laser[J]. Applied Optics, 2014, 53(32): 7629-7633.

【30】MAN W S, TAM H Y, DEMOKAN M S, et al. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser[J]. Journal of the Optical Society of America B, 2000, 17(1): 28-33.

引用该论文

LI Jing-ling,HAN Dong-dong,HUI Zhan-qiang,REN Kai-li,LUO Wen-feng,YAO Ying,ZHAO Feng,XIN Xiang-jun,GONG Jia-min. Switchable Mode Locking of Rectangular Dissipative Soliton and Gaussian-spectrum Pulse in Normal Dispersion Fiber Laser[J]. ACTA PHOTONICA SINICA, 2019, 48(5): 0506002

李静玲,韩冬冬,惠战强,任凯利,罗文峰,姚英,赵峰,忻向军,巩稼民. 正色散光纤激光器中矩形耗散孤子与高斯光谱脉冲的切换锁模[J]. 光子学报, 2019, 48(5): 0506002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF