首页 > 论文 > 激光技术 > 43卷 > 2期(pp:179-183)

液相脉冲激光辅助制备单壁碳纳米角的研究

Preparation of single-wall carbon nanohorns assisted by liquid medium and pulsed laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了探索出一种可控、稳定、高效的制备碳纳米角的方法, 采用高功率、短脉冲Nd∶YAG激光器对悬浮于液相介质中的天然鳞片石墨颗粒进行激光辐照, 并通过高分辨率透射电镜、激光喇曼光谱等检测手段对实验产物进行表征, 对实验结果进行了理论分析与实验验证。结果表明, 激光能量为150mJ, 300mJ, 450mJ和600mJ时, 对应的产物分别为seed型、bud型、dahlia型和petal-dahlia型碳纳米角; 4种形态的碳纳米角的粒径均分布于10nm~80nm范围内, 平均粒径分别为29nm, 33nm, 36nm和38nm。该研究对制备出不同形态的碳纳米角是有帮助的。

Abstract

In order to explore a controllable, stable and efficient method for preparing carbon nanohorns, Nd∶YAG laser with high power and short pulse was used to irradiate natural flake graphite particles suspended in liquid medium. The experimental products were characterized by high resolution transmission electron microscopy and laser Raman spectroscopy. The experimental results were analyzed theoretically and experimentally. The results show that, when laser energy is 150mJ, 300mJ, 450mJ and 600mJ, the corresponding products are carbon nanohorns of seed type, bud type, dahlia type and petal-dahlia type respectively. The particle sizes of the four kinds of carbon nanohorns are all distributed in the range of 10nm to 80nm with average sizes of 29nm, 33nm, 36nm and 38nm, respectively. This study is helpful to prepare different forms of carbon nanohorn materials.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;TB383

DOI:10.7510/jgjs.issn.1001-3806.2019.02.006

所属栏目:激光与光电子技术应用

基金项目:国家自然科学基金资助项目(51479082);江苏省自然科学基金资助项目(BK20160014);江苏省333资助项目(BRA2017389)

收稿日期:2018-04-26

修改稿日期:2018-05-09

网络出版日期:--

作者单位    点击查看

王 冕:江苏大学 机械工程学院, 镇江 212013
马服辉:江苏大学 机械工程学院, 镇江 212013
王日红:江苏大学 机械工程学院, 镇江 212013
钱 磊:江苏大学 机械工程学院, 镇江 212013
马文迅:江苏大学 机械工程学院, 镇江 212013
任旭东:江苏大学 机械工程学院, 镇江 212013

联系人作者:任旭东(renxd@mail.ujs.edu.cn)

备注:王 冕(1993-), 男, 硕士研究生, 主要从事激光法制备新型碳纳米材料的研究。

【1】IIJIMA S, YUDASAKA M, YAMADA R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns[J]. Chemical Physics Letters, 1999, 309(3/4):165-170.

【2】BANDOW S, KOKAI F, TAKAHASHI K, et al. Interlayer spacing anomaly of single wall carbon nanohorn aggregates[J]. Chemical Physics Letters, 2000, 321(5/6):514-519.

【3】FAN J, YUDASAKA M, KASUYA Y, et al. Influence of water on desorption rates of benzene adsorbed within single-wall carbon nanohorns[J]. Chemical Physics Letters, 2004, 397(1):5-10.

【4】ZHU S, NIU W, LI H, et al. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample[J]. Talanta, 2009, 79(5):1441-1445.

【5】ZHU S, LI H, NIU W, et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2009, 25(4):940-943.

【6】LIU X, SHI L, NIU W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosensors & Bioelectronics, 2008, 23(12):1887-1890.

【7】LIU X, LI H, WANG F, et al. Functionalized single-walled carbon nanohorns for electrochemical biosensing[J]. Biosensors & Bioelectronics, 2010, 25(10):2194-2199.

【8】MOGHIMI S M, HUNTER A C, MURRAY J C. Long-circulating and target-specific nanoparticles: Theory to practice[J]. Pharmacological Reviews, 2001, 53(2):283-318.

【9】XU J, YUDASAKA M, KOURABA S, et al. Single wall carbon nanohorn as a drug carrier for controlled release[J]. Chemical Physics Letters, 2008, 461(4/6):189-192.

【10】LI N, WANG Z, ZHAO K, et al. Synthesis of single-wall carbon nanohorns by acr-discharge in air and their formation mechanism [J]. Carbon, 2010, 48(5):1580-1585.

【11】KASUYA D, YUDASAKA M, TAKAHASHI K, et al. Selective production of single-wall carbon nanohorn aggregates and their formation mechanism [J]. Journal of Physical Chemistry, 2002, B106(19):4947-4951.

【12】SANO N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection [J]. Journal of Physics, 2004, D37(8):L17.

【13】YAMAGUCHI T, BANDOW S, IIJIMA S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods [J]. Chemical Physics Letters, 2004, 389(1/3):181-185.

【14】MIRABILE GATTIA D, VITTORI ANTISARI M, MARAZZI R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets [J]. Nanotechnology, 2007, 18(25):255604.

【15】YANG T, ZHOU W F, YANG J D, et al. Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy[J]. Laser Technology, 2017, 41(4):526-530 (in Chinese).

【16】YANG J D, ZHOU W F, YANG T, et al. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. Laser Technology, 2017, 41(5):754-758 (in Chinese).

【17】QIAN X Zh, WANG Q Q, REN N F. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. Laser Technology, 2017, 41(4):578-581 (in Chinese).

【18】ZHEN L M, L Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser[J]. Laser Technology, 2016, 40(1):25-28 (in Chinese).

引用该论文

WANG Mian,MA Fuhui,WANG Rihong,QIAN Lei,MA Wenxun,REN Xudong. Preparation of single-wall carbon nanohorns assisted by liquid medium and pulsed laser[J]. Laser Technology, 2019, 43(2): 179-183

王 冕,马服辉,王日红,钱 磊,马文迅,任旭东. 液相脉冲激光辅助制备单壁碳纳米角的研究[J]. 激光技术, 2019, 43(2): 179-183

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF