首页 > 论文 > 激光技术 > 43卷 > 4期(pp:557-562)

一种基于二氧化钒材料的可调谐吸波器设计

Design of a tunable microwave absorber based on vanadium dioxide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了在THz波段获得TE波下的可调谐吸收频谱, 采用全波仿真的方法, 设计了一款基于二氧化钒材料的可调谐THz吸波器, 对该吸波器的吸收频谱、电场图、表面电流图以及能量损耗图进行分析, 并讨论了结构参量h4,k以及入射角度θ对吸收频域和吸收带宽的影响。结果表明, 通过外部温控的方式改变二氧化钒谐振单元的物理特性可以获得可调谐的吸收频谱并改善吸波器的吸收性能, 该吸波器在温度T≥68℃时, 可以实现在2.70THz~3.36THz频段的宽带吸收(吸收率在90%以上), 相对带宽达到21.8%;在T<68℃时, 可以实现多个单频点的吸收;改变结构参量h4,k可以改变吸收频点的位置以及吸收带宽, 改变入射角度θ可以影响吸波器的吸收效果。该研究对可调谐太赫兹器件的进一步探究是有帮助的。

Abstract

In order to obtain the tunable absorption spectrum of TE wave in THz band, a tunable THz absorber based on vanadium dioxide was designed by full-wave simulation. Absorption spectrum, electric field, surface current and energy loss of the absorber were analyzed. The effects of structural parameters h4, k and incident angle θ on absorption frequency domain and absorption bandwidth were discussed. The simulation results show that, tunable absorption spectrum can be obtained and absorption performance of the microwave absorber can be improved by changing the physical characteristics of vanadium dioxide resonator unit through external temperature control. When T≥68℃, broadband absorption of microwave absorber can be achieved in 2.70THz~3.36THz band. Absorption rate is above 90% and relative bandwidth can reach 21.8%. When T<68℃, multiple single frequency points can be absorbed. The position of absorption frequency point and absorption bandwidth can be changed by changing the structural parameters h4 and k. The absorption effect can be affected by changing incident angle θ. This study is helpful for further research of tunable terahertz devices.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436;O53

DOI:10.7510/jgjs.issn.1001-3806.2019.04.021

所属栏目:激光物理、材料与器件

基金项目:国家级大学生创新训练计划资助项目(SZDG2018012);东南大学毫米波国家重点实验室开放课题资助项目(K201927)

收稿日期:2018-08-14

修改稿日期:2018-11-15

网络出版日期:--

作者单位    点击查看

道日娜:南京邮电大学 电子与光学工程、微电子学院, 南京 210023
孔心茹:南京邮电大学 电子与光学工程、微电子学院, 南京 210023
章海锋:南京邮电大学 电子与光学工程、微电子学院, 南京 210023南京邮电大学 电子科学与技术国家级实验教学示范中心,南京 210023南京邮电大学 信息电子技术国家级虚拟仿真实验教学中心, 南京 210023东南大学 毫米波国家重点实验室, 南京 210096
苏欣然:南京邮电大学 电子与光学工程、微电子学院, 南京 210023

联系人作者:章海锋(hanlor@163.com)

备注:道日娜(1998-), 女, 大学本科生, 现主要从事超材料吸波器、电磁超材料的研究。

【1】LINDELL I V, TRETYAKOV S A, NIKOSKINEN K I, et al. BW media—media with negative parameters, capable of supporting backward waves[J]. Microwave and Optical Technology Letters, 2001, 31(2): 129-133.

【2】VESELAGO V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability[J]. Physics, 1968, 10(4): 509-514.

【3】CALOZ C, ITOH T. Novel microwave devices and structures based on the transmission line approach of meta-materials[C]// Microwave Symposium Digest, 2003 IEEE MTT-S International. New York,USA: IEEE, 2003: 195-198.

【4】PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

【5】TAO H, BINGHA M, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review, 2008, B78(24): 241103.

【6】ZHOU J, DONG J, WANG B, et al. Negative refractive index due to chirality [J]. Physical Review, 2009, B79(12): 121104.

【7】ARSENAULLT A C, PUZZO D P, MANNERS I, et al. Photonic-crystal full-colour displays[J]. Nature Photonics, 2007, 1(8): 468-472.

【8】AKAHANE Y, ASANO T, SONG B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

【9】PARIMI P V, LU W T, VODO P, et al. Photonic crystals: Imaging by flat lens using negative refraction[J]. Nature, 2003, 426(6965): 404-408.

【10】SMITH D R, KROLL N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14): 2933-2936.

【11】YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon[J]. Laser Technology, 2017, 41(6): 826-830 (in Chinese).

【12】ZHU X W, WANG X B, FU Y F, et al. Research of collector mi-rrors of CO2 laser produced plasma EUV source[J]. Laser Technology, 2010,34(6): 725-728(in Chinese).

【13】LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

【14】MASTRODDI F, FACCHINI G, GAUDENZI P. Multi-frequency dynamic absorber for improved spacecraft comfort during the launch phase[J]. CEAS Space Journal, 2012, 3(3/4): 77-88.

【15】PU M B, WANG M, HU C, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23): 25513-25519.

【16】AMIN M, FARHAT M, BAGCI H. An ultra-broadband multilayered graphene absorber[J]. Optics Express, 2013, 21(24): 29938-29948.

【17】CHAO G U, SHAOBO Q U, PEI Z B, et al. A wide-band metamaterial absorber based on loaded magnetic resonators[J]. Chinese Physics Letters, 2011, 28(6): 067808.

【18】XU Y L, LI E P, WEI X C, et al. A novel tunable absorber based on vertical graphene strips[J]. IEEE Microwave & Wireless Components Letters, 2016, 26(1): 10-12.

【19】MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959, 3(1): 34-36.

【20】SCHOISWOHL J, KRESSE G, SURNEV S, et al. Planar vanadium oxide clusters: Two-dimensional evaporation and diffusion on Rh(111)[J]. Physical Review Letters, 2004, 92(20): 206103.

【21】WU W H, WANG D P, HUANG W H, et al. Property of VO2 thin film affected by doping and treatment temperature[J]. Journal of Building Materials, 2006, 9(5): 548-554.

【22】CAVALLERI A, TOTH C, SIDERS C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition[J]. Physical Review Letters, 2001, 87(23): 237401.

【23】DUMASBOUCHIAT F, CHAMPEAUX C, CATHERINOT A, et al. RF microwave switches based on reversible metal-semiconductor transition properties of VO2 thin films: An attractive way to realise simple RF microelectronic devices[J]. MRS Proceedings, 2008, 1129(2): 021109.

【24】HA S D, ZHOU Y, FISHER C J, et al. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices[J]. Journal of Applied Physics, 2013, 113(18): 184501.

【25】SEO M, KYOUNG J, PARK H, et al. Active terahertz nanoantennas based on VO2 phase transition[J]. Nano Letters, 2010, 10(6): 2064-2068.

【26】LIU Z M, LI Y, ZHANG J, et al. A tunable metamaterial absorber based on VO2/W multilayer structure[J]. IEEE Photonics Techno-logy Letters, 2017, PP(99): 1.

引用该论文

DAORINA,KONG Xinru,ZHANG Haifeng,SU Xinran. Design of a tunable microwave absorber based on vanadium dioxide[J]. Laser Technology, 2019, 43(4): 557-562

道日娜,孔心茹,章海锋,苏欣然. 一种基于二氧化钒材料的可调谐吸波器设计[J]. 激光技术, 2019, 43(4): 557-562

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF