首页 > 论文 > 光电工程 > 46卷 > 5期(pp:180464--1)

激光诱导光栅表面等离子体增强 CdSe QDsIncident light CdSe量子点荧光

Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用 532 nm皮秒脉冲激光在金纳米光栅表面诱导表面等离子体激发 CdSe量子点荧光,并测量了 CdSe量子点荧光增强效应。分别采用 AFM刻蚀方法和自组装方法在硅基金膜表面制备了纳米光栅/CdSe量子点的多层薄膜结构。通过调节皮秒脉冲激光的功率,在显微拉曼平台上测量了 CdSe量子点的荧光光谱。结果表明,金纳米光栅 /CdSe量子点结构能够实现量子点远场荧光大幅增强,其最大荧光强度达 7.80倍,并在达到最大强度点开始迅速饱和。该研究结果可广泛应用于光电器件、生物医学检测研究等领域。

Abstract

The fluorescence enhancement effect of CdSe quantum dots (QDs) was measured by using a picosecond pulsed laser with a 532 nm excitation wavelength to induce surface plasmon (SP) on a gold nanograting surface. A layered thin film was prepared on the gold film surface of silicon fund by atomic force microscope (AFM) etching and self-assembly method, respectively. The fluorescence spectrum of CdSe QDs was measured by adjusting the power of picosecond pulsed laser on a micro-Raman measuring platform. The results showed that the structure of the gold nanograting and CdSe QDs could greatly enhance the far-field fluorescence of CdSe QDs, the maximum fluores-cence intensity was up to 7.80 times, and it had been saturated rapidly at the point of reaching the maximum inten-sity. The results of this study could be widely used in fields of the optoelectronic devices, biomedical detection.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O432;TN253

DOI:10.12086/oee.2019.180464

所属栏目:科研论文

基金项目:国家自然科学基金项目 (61741505);贵州省科技支撑项目 (QKHZ[2017]2887);中央引导地方科技发展专项(QKZYD[2017]4004);贵州省人才团队项目 ([2018]5616)

收稿日期:2018-09-06

修改稿日期:2018-11-26

网络出版日期:--

作者单位    点击查看

黎显继:贵州大学大数据与信息工程学院,贵州贵阳 550025
白忠臣:贵州大学贵州省光电子技术及应用重点实验室,贵州贵阳 550025
彭嫚:贵州大学大数据与信息工程学院,贵州贵阳 550025
商业:贵州大学大数据与信息工程学院,贵州贵阳 550025
秦水介:贵州大学贵州省光电子技术及应用重点实验室,贵州贵阳 550025

联系人作者:秦水介(shuijie_qin@sina.com)

备注:黎显继(1991-),男,硕士研究生,主要从事纳米量子点及其应用方面的研究。 E-mail:Lixianjisky@163.com

【1】Liu N, Hong Z L. Design of CMOS process compatible photo-detectors for fluorescence detecting application[J]. Op-to-Electronic Engineering, 2008, 35(7): 140–144.
刘楠, 洪志良. 用于生物荧光检测的 CMOS光电探测器设计 [J].光电工程, 2008, 35(7): 140–144.

【2】Yang X B, Yan W P. OLED-induced fluorescence detection system affixed with micro lens array for capillary electrophore-sis microchip[J]. Opto-Electronic Engineering, 2015, 42(1): 6–12.
杨晓博, 闫卫平. 表面贴附微透镜阵列的 OLED诱导荧光检测系统[J].光电工程, 2015, 42(1): 6–12.

【3】Fort E, Grésillon S. Surface enhanced fluorescence[J]. Journal of Physics D: Applied Physics, 2008, 41(1): 013001.

【4】Drexhage K H. Influence of a dielectric interface on fluores-cence decay time[J]. Journal of Luminescence, 1970, 1–2: 693–701.

【5】Turner E H, Lauterbach K, Pugsley H R, et al. Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence[J]. Analytical Chemistry, 2007, 79(2): 778–781.

【6】Lakowicz J R, Shen B, Gryczynski Z, et al. Intrinsic fluores-cence from DNA can be enhanced by metallic particles[J]. Bi-ochemical and Biophysical Research Communications, 2001, 286(5): 875–879.

【7】Abel B, Coskun S, Mohammed M, et al. Metal-enhanced fluo-rescence from silver nanowires with high aspect ratio on glass slides for biosensing applications[J]. The Journal of Physical Chemistry C, 2015, 119(1): 675–684.

【8】Aslan K, Lakowicz J R, Szmacinski H, et al. Enhanced rati-ometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing[J]. Journal of Fluores-cence, 2005, 15(1): 37–40.

【9】Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9): 763–775.

【10】Xiong L H, Cui R, Zhang Z L, et al. Uniform fluorescent nano-bioprobes for pathogen detection[J]. ACS Nano, 2014, 8(5): 5116–5124.

【11】Hong ZY, Lv C,Liu AA, et al. Clicking hydrazine and aldehyde: the way to labeling of viruses with quantum dots[J]. ACS Nano, 2015, 9(12): 11750–11760.

【12】Liu F, Zhu J, Wei J F, et al. Quantum dot-sensitized solar cells[J]. Progress in Chemistry, 2013, 25(2–3): 409–418.
刘锋, 朱俊, 魏俊峰, 等. 量子点敏化太阳电池[J].化学进展, 2013, 25(2–3): 409–418.

【13】Peng B, Li Z P, Mutlugun E, et al. Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluores-cence[J]. Nanoscale, 2014, 6(11): 5592–5598.

【14】Kannegulla A, Liu Y, Cheng L J. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring na-nostructure array[J]. Proceedings of SPIE, 2016, 9758: 97580B.

【15】Peer A, Hu Z J, Singh A, et al. Photoluminescence enhance-ment of CuInS2 quantum dots in solution coupled to plasmonic gold nanocup array[J]. Small, 2017, 13(33): 1700660.

【16】Hao L C, Bai Z C, Qin S J, et al. The effect of differential tem-peratures on the latent heat in the nucleation of CdSe quantum dots[J]. Journal of Semiconductors, 2017, 38(4): 042004.

【17】Bai Z C, Hao L C, Zhang Z P, et al. Measuring photolumines-cence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics micro-scopy[J]. Functional Materials Letters, 2016, 9(3): 1650040.

【18】Deng Z T, Cao L, Tang F Q, et al. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis[J]. The Journal of Physical Chemistry B, 2005, 109(35): 16671.

【19】Lin J, Wang D P, Si G Y. Recent progress on plasmonic meta-surfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289–296.
林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J].光电工程, 2017, 44(3): 289–296.

【20】Yao M, Zhou F, Shi J P, et al. Nanoparticle coupling effect allows enhanced localized field on Au bowl-like pore arrays[J]. RSC Advances, 2016, 6(36): 29958–29962.

【21】Dong K X, Ji Y P,Mi J J, et al. High sensitivity SPR sensor for liquid phase sample with Ag/PbS/Graphene hybrid nanostruc-ture[J]. Opto-Electronic Engineering, 2017, 44(2): 198–201.

【22】Hutter E, Fendler J H. Exploitation of localized surface Plas-mon resonance[J]. Advanced Materials, 2004, 16(19): 1685–1706.

【23】Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluores-cence biosensors: a review[J]. Plasmonics, 2014, 9(4): 781–799.

【24】Dneprovskii V S, Zhukov E A, Lyaskovskii V L, et al. Lumines-cence of CdSe/Al2O3 quantum wires at high photoexcitation levels[J]. Physics of the Solid State, 2004, 46(9): 1755–1760.

引用该论文

Li Xianji,Bai Zhongchen,Peng Man,Shang Ye,Qin Shuijie. Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface[J]. Opto-Electronic Engineering, 2019, 46(5): 180464

黎显继,白忠臣,彭嫚,商业,秦水介. 激光诱导光栅表面等离子体增强 CdSe QDsIncident light CdSe量子点荧光[J]. 光电工程, 2019, 46(5): 180464

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF