首页 > 论文 > 光子学报 > 48卷 > 7期(pp:726001--1)

完美涡旋光拓扑荷的原位测定

Topological Charge in Situ Measuring of Perfect Optical Vortex

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了实现对完美涡旋光拓扑荷的快速测定, 提出了一种同轴干涉测定方法, 其基本思路是利用一个空间光调制器同时调制产生完美涡旋光与球面波, 调制球面波的发散角使两者发生干涉, 利用干涉条纹数来实现拓扑荷数的直接快速测定.理论模拟和实验测定结果表明, 利用该方法得到的干涉条纹可以测定完美涡旋光的拓扑荷, 包括大小与符号.进一步, 利用该方法测量了完美涡旋光阵列与球面波的干涉图样, 实现了对每个完美涡旋光的拓扑荷的快速测定.该原位测定方法简单、有效, 对于利用完美涡旋光实现轨道角动量控制和信息编码等应用具有参考意义.

Abstract

In order to determine the topological charge of a Perfect Optical Vortex (POV), a in-line interferometric measurement method was presented. The basic idea is to use a spatial light modulator to produce a POV and a spherical wave simultaneously. By modulating the divergence angle of the spherical wave, the POV and the spherical wave interfer. The number of interference fringes is used to realize the direct and rapid measurement of topological charge. Simulated and experimental results show that the interference fringes obtained by the method can be used to determine the topological charge of POVs, including the magnitude and symbol. Furthermore, the proposed in situ method is demonstrated to determine the topological charge of the POV array by measuring the interference pattern of a perfect vortex array and a spherical wave. The proposed in situ method is simple and effective. Therefore, it is of a significance for the application of orbital angular momentum control and information coding based on POVs.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/gzxb20194807.0726001

基金项目:国家自然科学基金(Nos.81427802, 11474352, 11574389)

收稿日期:2019-04-03

修改稿日期:2019-05-13

网络出版日期:--

作者单位    点击查看

任斐斐:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119中国科学院大学, 北京 100049
梁言生:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
蔡亚楠:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119中国科学院大学, 北京 100049
何旻儒:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119中国科学院大学, 北京 100049
雷铭:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
姚保利:中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119

联系人作者:任斐斐(renfeifei2016@opt.cn)

备注:任斐斐(1994-), 女, 硕士研究生, 主要研究方向为矢量光场和显微成像.

【1】ALLEN L, BEIJERSBERGEN M W, SPREEUW R J,et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

【2】PADGETT M, BOWMAN R, Tweezers with a twist[J].Nature Photonics, 2011, 5(6): 343-348.

【3】MAIR A, VAZIRI A, WEIHS G,et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

【4】PERUMANGATT C, LAL N, ANWAR A,et al. Quantum information with even and odd states of orbital angular momentum of light and odd states of orbital angular[J]. Physics Letters A, 2017, 381(22): 1858-1865.

【5】HELLER I, SITTERS G, BROEKMANS O D,et al. Sted nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA[J]. Nature Methods, 2013, 10: 910.

【6】ALLEN L, LEMBESSIS V, BABIKER M. Spin-orbit coupling in free-space laguerre-gaussian light beams[J].Physical Review A, 1996, 53(5): R2937- R2939.

【7】GAHAGAN K, SWARTZLANDER G, Optical vortex trapping of particles[J].Optics Letters, 1996, 21(11): 827-829.

【8】BEKSHAEV A Y, SOSKIN M S, VASNETSOV M V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams[J].Journal of Optical Society America A, 2003, 20(8): 1635-1643.

【9】ZHAN Qi-wen. Properties of circularly polarized vortex beams[J].Optics Letters, 2006, 31(7): 867-869.

【10】KOTLYAR V V, KHONINA S N, ALMAZOV A A, et al. Elliptic laguerre-gaussian beams[J]. Journal of Optical Society America A, 2006, 23(1): 43-56.

【11】SIMPSON S H, HANNA S. Optical angular momentum transfer by laguerre-gaussian beams[J]. Journal of Optical Society America A, 2009, 26(3): 625-638.

【12】OSTROVSKY A S, RICKENSTORFF-PARRAO C, ARRIZN V. Generation of the “perfect” optical vortex using aliquid-crystal spatial light modulator[J].Optics Letters, 2013, 38(4): 534-536.

【13】VAITY P, RUSCH L. Perfect vortex beam: Fourier transformation of a Bessel beam[J].Optics Letters, 2015, 40(4): 597-600.

【14】GARCA-GARCA J, RICKENSTORFF-PARRAO C, RAMOS-GARCA R. Simple technique for generating the perfect optical vortex[J].Optics Letters, 2014, 39(18): 5305-5308.

【15】CHEN Ming-zhou, MAZILU M, ARITA Y. Creating and probing of a perfect vortex in situ with an optically trapped particle[J].Optical Review, 2015, 22(1): 162-165.

【16】FU Shi-yao, WANG Tong-lu, GAO Chun-qing. Generating perfect polarization vortices through encoding liquid-crystal display devices[J].Applied Optics, 2016, 55(23): 6501-6505.

【17】PRADHAN P, SHARMA M, UNG B. Generation of perfect cylindrical vector beams with complete control over the ring width and ring diameter[J].IEEE Photonics Journal, 2018, 10(1): 6500310.

【18】LI Deng-lin, CHANG Chen-liang, NIE Shou-ping,et al. Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase[J]. Applied Physics Letters, 2018, 113(12): 121101.

【19】LI Lin, CHANG Chen-liang, YUAN Cao-jin, et al. High efficiency generation of tunable ellipse perfect vector beams[J]. Photonics Research, 2018, 6(12): 1116-1123.

【20】LIANG Yan-sheng, LEI Ming, YAN Shao-hui,et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex[J]. Applied Optics, 2018, 57(1): 79-84.

【21】LEACH J, PADGETT M J, BARNETT S M,et al. Measuring the orbital angular momentum of a single photon[J]. Physical review letters, 2002, 88(25): 257901.

【22】LI Xin-zhong, TAI Yu-ping, LV Fang-jie,et al. Measuring the fractional topological charge of LG beams by using interference intensity analysis[J]. Optics Communications, 2015, 334: 235-239.

【23】GUO Cheng-shan, LU Lei-lei, WANG Hui-tian. Characterizing topological charge of optical vortices by using an annular aperture[J].Optics Letters, 2009, 34(23): 3686-3688.

【24】HAN Yu-jing, ZHAO Guang-hui. Measuring the topological charge of optical vortices with an axicon[J].Optics Letters, 2011, 36(11): 2017-2019.

【25】FANG Liang, GAN Xue-tao, ZHAO Jian-lin. Topological transformation of vortex beams using cylindrical lens[J].Acta Photonica Sinica, 2014, 43(3): 0326001.
方亮, 甘雪涛, 赵建林. 利用柱透镜调控涡旋光束的拓扑结构[J]. 光子学报, 2014, 43(3): 0326001.

【26】GUO Jian-jun, GUO Bang-hong, FAN Rong-hua,et al. Measuring topological charges of Laguerre-Gaussian vortex beams using two improved Mach–Zehnder interferometers[J]. Optical Engineering, 2016, 55(3): 035104.

【27】MA Hai-xiang, LI Xin-zhong. TAI Yu-ping,et al. In situ measurement of the topological charge of a perfect vortex using the phase shift method[J]. Optics Letters, 2017, 42(1): 135-138.

【28】GARCA-GARCA J, RICKENSTORFF-PARRAO C, RAMOS-GARCA R,et al. Simple technique for generating the perfect optical vortex[J]. Optics Letters, 2014, 39(18): 5305-5308.

【29】LIU Ya-cha, KE You-gang, ZHOU Jun-xiao,et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements[J]. Scientific Reports, 2017, 7: 44096.

【30】LI De-lin, CHANG Chen-liang, NIE Shou-ping,et al. Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase[J]. Applied Physics Letters, 2018, 113(12): 121101.

引用该论文

REN Fei-fei,LIANG Yan-sheng,CAI Ya-nan,HE Min-ru,LEI Ming,YAO Bao-li. Topological Charge in Situ Measuring of Perfect Optical Vortex[J]. ACTA PHOTONICA SINICA, 2019, 48(7): 0726001

任斐斐,梁言生,蔡亚楠,何旻儒,雷铭,姚保利. 完美涡旋光拓扑荷的原位测定[J]. 光子学报, 2019, 48(7): 0726001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF