首页 > 论文 > 量子电子学报 > 36卷 > 4期(pp:402-407)

基于单幅图像的雾霾图像快速还原方法

Fast recovery of fog and haze images based on single image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在单幅图像的条件下,为了能更快地实现雾天图像的复原, 且使其在雾天和霾天的状况下均能获得较好的复原效果,对基于暗原色先验的雾图还原方法和基于 人眼视觉理论的Retinex方法进行了结合和改进。对前者的大气光强度的估算进行改进,并对灰霾 天气状况下图像色彩进行矫正,使其对雾天和灰霾天气图像均适用。此外将暗原色先验理论中的透射率 估算进行简化,结合Retinex算法实现了雾霾图像的实时处理。经实验验证,该方法对道路监控等 应用场景下的雾霾图像处理有较好的效果,同时保证了处理的实时性。

Abstract

In single image, in order to recover the image in the foggy weather faster, and make it suitable for both foggy and haze weather, the method of dark channel prior and the Retinex method based on the theory of human vision are combined and improved. Estimation of atmospheric light intensity in the dark channel prior is improved and the color of haze image is rectified in the method, which make it suitable for both the fog and haze image. In addition, the transmissivity estimation in the method of dark channel prior is simplified. The simplified dark channel prior method and the Retinex algorithm are combined, which achieves real-time processing of the fog and haze image. Based on the experiment, this method has preferable efficiency on processing the fog and haze image in the application of monitoring road, while the real-time speed is also guaranteed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751

DOI:10.3969/j.issn.1007-5461. 2019.04.003

所属栏目:图像与信息处理

收稿日期:2018-09-07

修改稿日期:2018-11-12

网络出版日期:--

作者单位    点击查看

钱 江:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
方勇华:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
吴 军:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:钱江(qianjiangimage@163.com)

备注:钱 江 (1990-),湖北天门人,研究生,从事数字图像处理方面的研究。

【1】Guo Fan. Research on Image Defogging, Effect Assessment and Application (图像去雾方法和评价及其应用研究)[D]. Changsha: Doctorial Dissertation of Central South University, 2011: 15-30 (in Chinese).

【2】He Kaiming, Sun jian, Tang Xiaoou. Single image haze removal using dark channel prior [C]. Computer Vision and Pattern Recognition , 2009: 1956-1963.

【3】He Kaiming, Sun Jian, Tang Xiaoou. Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013, 35(6): 1397-1409.

【4】Frankle J A, McCann J J. Method and Apparatus for Lightness Imaging [M]. Google Patents, 1983, 15(2): 495-503.

【5】Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex [J]. IEEE Transactions on Image Processing , 1997, (3): 451-462.

【6】Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color image and the human observation of scenes [J]. IEEE Transactions on Image Processing , 1997, (7): 965-976.

【7】Rahman Z, Jobson D J, Woodel G A. Retinex processing for automatic image enhancement [J]. Journal of Electronic Imaging , 2004, 13(1): 100-110.

【8】Tan R T. Visibility in bad weather from a single image [C]. Computer Vision and Pattern Recognition , 2008: 1-8.

【9】Yu Jing, Li Dapeng, Liao Qingmin. Physics-based fast single image fog removal [J]. Acta Automatica Sinica , 2011, 37(2): 143-149.

引用该论文

QIAN Jiang,FANGYonghua,WU Jun. Fast recovery of fog and haze images based on single image[J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 402-407

钱 江,方勇华,吴 军. 基于单幅图像的雾霾图像快速还原方法[J]. 量子电子学报, 2019, 36(4): 402-407

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF