首页 > 论文 > 光谱学与光谱分析 > 39卷 > 8期(pp:2651-2656)

国产新型高密度光栅光谱仪数据处理方法研究

Study on Spectral Data Processing Methods of New Type High-Density Grating Spectrometer Made in China

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由上海棱光技术有限公司与中国农业大学联合研发的S450型近红外高密度光栅光谱仪, 使用高速采集技术可得到高密度光谱(波长范围900~2 500 nm, 采集间隔0.1 nm, 光谱包含16 001个数据点), 本文采用该仪器并以小麦、 烟草样品为实验对象, 针对高密度光谱的数据特点, 采用S.G.(savitzky-golay)平滑、 固定窗口组合滑动窗口平滑(FCMWS和一阶导数(FD)等数据处理方法, 并应用偏最小二乘法(PLS)对小麦粗蛋白、 烟草烟碱及总糖含量进行建模和预测, 对仪器整体性能以及数据处理方法的参数优化等, 进行了评价和比较研究。 结果表明: (1)小麦、 烟草样品的原光谱经S.G.平滑结合一阶导数预处理后, 模型性能大幅提高, 通过对参数拟合阶次M和平滑点数N进行优化得出, 当M一定时, N可选取范围较宽, 且当M=2和N处于201~801区间时模型效果理想且稳定; (2)FCMWS方法对小麦、 烟草样品的原光谱进行两层平均平滑, 经调整优化平滑参数K1和K2(K1为第一层平滑的固定窗口大小, K2为第二层滑动窗口大小)得出: 两层平滑参数相乘约为150~310时, 模型性能稳定且较优, 同时FCMWS方法极大地提高了建模速度; (3)以小麦样品为对象, 同时在两台S450型光谱仪上采集样品光谱, 对比分析了仪器间的性能差异, 结果表明光谱经S.G.平滑或FCMWS方法处理后, 不同仪器模型间相互预测数据的相对偏差小于2.00%, 远低于预测值与参考值间的相对偏差, 说明上述两种方法均可降低仪器的台间差异, 实现台间模型的稳定传递。 研究结果表明, 国产S450型高密度光栅光谱仪结合数据平滑去噪技术, 已满足小麦、 烟草等农产品品质检测和模型传递的性能要求, 且该光栅型仪器成本相对较低, 对农业领域推广近红外快速检测技术的应用具有实际意义。

Abstract

In this paper, we used the S450 near-infrared high-density grating spectrometer with technology of high-speed acquisition developed by Shanghai Lengguang Technology Co., Ltd. and China Agricultural University, took wheat and tobacco as the experimental object, and aimed at the high-density spectra (wavelength range is 900~ 2500nm, interval of wavelength is 0.1 nm, contains 16 001 data points). By adapting processing methods such as S.G. (Savitzky-Golay) smooth, FCMWS (Fixed window combine moved window smoothing) and the First Derivative, Partial Least Squares (PLS) was also used to model and predict the content of crude protein in wheat, nicotine and total sugar in tobacco, evaluate performance of the spectrometer, and optimize the parameters of processing methods. The results show that: (1) The performance of the models was greatly improved after the high density spectrum was processed by S.G. and the first derivative. Optimizing the parameter M (fitting order) and N(number of smoothing point) , if M is a fixed number, N can be selected from a wider range, and when M=2, N is in the interval of 201~801, the performance of models is ideal and stable; (2) The FCMWS was designed for smoothing layers of two, fixed window size of the first layer K1 and second layer K2 , and it was concluded that the performance of models is better and superior when the multiplication of K1 and K2 is about 150~310, moreover the FCMWS algorithm is speedy in modeling. (3) In order to analyze instrument differences, only took wheat as the object, which was measured by two S450 spectrometers, experimentally, whether the spectrum is processed by S.G. or FCMWS, the relative deviation of the predicted data from different models between instruments is less than 2.00%, which is far lower than the relative deviation between the predicted and reference values. It indicates that the above two methods can reduce the instrument differences and models can transfer stably among instruments. For wheat, tobacco and other agricultural products, the results of this study reflect that the domestic high-density grating spectrometer S450 combined with de-noising methods, can meet the actual requirements of quality detection and model transfer, and the grating instrument is relatively low-cost, which is significant for popularizing application of the rapid detection technology of near infrared in the agricultural field.

中国激光微信矩阵
补充资料

中图分类号:O657.3

DOI:10.3964/j.issn.1000-0593(2019)08-2651-06

基金项目:国家重点研发计划课题(2016YFD0700304, 2004BA210A03)资助

收稿日期:2018-06-30

修改稿日期:2018-10-25

网络出版日期:--

作者单位    点击查看

张甜甜:中国农业大学信息与电气工程学院, 北京 100083
李 兵:上海棱光技术有限公司, 上海 200023
蔡贵民:上海棱光技术有限公司, 上海 200023
李军会:中国农业大学信息与电气工程学院, 北京 100083
马雁军:上海烟草集团北京卷烟厂, 北京 101121
马 莉:上海烟草集团北京卷烟厂, 北京 101121
赵龙莲:中国农业大学信息与电气工程学院, 北京 100083
吴树恩:上海棱光技术有限公司, 上海 200023

联系人作者:张甜甜(1521958103@qq.com)

备注:张甜甜, 女, 1994年生, 中国农业大学信息与电气工程学院硕士研究生

【1】DING Ying(丁 莹). Infrared(红外), 2012, 33(7): 1.

【2】YAN Yan-lu(严衍禄). Principle, Technology and Application of NIR Spectra Analysis(近红外光谱分析的原理、 技术与应用). Beijing: China Light Industry Press(北京: 中国轻工业出版社), 2013.

【3】CHU Xiao-li, et al(褚小立, 等). Practical Handbook for Near Infrared Spectroscopy(近红外光谱分析技术实用手册). Beijing: China Machine Press(北京: 机械工业出版社), 2016. 3.

【4】Brad Swarbrick. NIR News, 2016, 27(1): 39.

【5】Lin C, Chen X, Jian L, et al. Food Chemistry, 2014, 162: 10.

【6】Liudmil Antonov. Journal of Near Infrared Spectroscopy, 2017, 25(2): 145.

【7】CHEN Hua-zhou, PAN Tao, CHEN Jie-mei(陈华舟, 潘 涛, 陈洁梅). Computer and Applied Chemistry(计算机与应用化学), 2011, 28(5): 518.

【8】FU Yi, ZHANG Yong-jun, CHEN Hua-cai, et al(傅 谊, 张拥军, 陈华才, 等). Food Science and Technology(食品科技), 2012, 37(5): 42.

【9】CAI Jian-hua, XIAO Yong-liang, LI Xiao-qin(蔡剑华, 肖永良, 黎小琴). China Tobacco(中国烟草学报), 2017, 23(4): 9.

【10】Jerome J Workman. Applied Spectroscopy, 2018, 72(3): 340.

【11】ElMasry G, Sun D W, Allen P, et al. Journal of Food Engineering, 2012, 100(1): 127.

【12】Ana Garrido-Varo. NIR News, 2017, 28(5): 2.

【13】Ba瘙塂lar Mehmet, Ertugay Mustafa Fatih. Turkish Journal of Agriculture and Forestry, 2011, 35(2): 139.

【14】SUN Jia-yin, LI Chun, LIU Ying, et al(孙佳音, 李 淳, 刘 英, 等). Infrared and Laser Engineering(红外与激光工程), 2016, 45(7): 148.

引用该论文

ZHANG Tian-tian,LI Bing,CAI Gui-min,LI Jun-hui,MA Yan-jun,MA Li,ZHAO Long-lian,WU Shu-en. Study on Spectral Data Processing Methods of New Type High-Density Grating Spectrometer Made in China[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2651-2656

张甜甜,李 兵,蔡贵民,李军会,马雁军,马 莉,赵龙莲,吴树恩. 国产新型高密度光栅光谱仪数据处理方法研究[J]. 光谱学与光谱分析, 2019, 39(8): 2651-2656

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF