Journal of Innovative Optical Health Sciences, 2019, 12 (4): 1930007, Published Online: Sep. 3, 2019  

Fast optical wavefront engineering for controlling light propagation in dynamic turbid media

Meiyun Xia 1,2Deyu Li 1,2,3Ling Wang 1,2,4,*Daifa Wang 1,2
Author Affiliations
1 School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China
2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China
3 State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing, 100083, P. R. China
4 College of Computer Science, Sichuan Normal University, Chengdu, 610101, P. R. China
Abstract
While propagating inside the strongly scattering biological tissue, photons lose their incident directions beyond one transport mean free path (TMFP, ~1 millimeter (mm)), which makes it challenging to achieve optical focusing or clear imaging deep inside tissue. By manipulating many degrees of the incident optical wavefront, the latest optical wavefront engineering (WFE) technology compensates the wavefront distortions caused by the scattering media and thus is toward breaking this physical limit, bringing bright perspective to many applications deep inside tissue, e.g., high resolution functional/molecular imaging, optical excitation (optogenetics) and optical tweezers. However, inside the dynamic turbid media such as the biological tissue, the wavefront distortion is a fast and continuously changing process whose decorrelation rate is on timescales from milliseconds (ms) to microseconds (s), or even faster. This requires that the WFE technology should be capable of beating this rapid process. In this review, we discuss the major challenges faced by the WFE technology due to the fast decorrelation of dynamic turbid media such as living tissue when achieving light focusing/imaging and summarize the research progress achieved to date to overcome these challenges.

Meiyun Xia, Deyu Li, Ling Wang, Daifa Wang. Fast optical wavefront engineering for controlling light propagation in dynamic turbid media[J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1930007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!