Journal of Innovative Optical Health Sciences, 2019, 12 (4): 1942007, Published Online: Sep. 3, 2019   

Active wavefront shaping for controlling and improving multimode fiber sensor

Author Affiliations
1 Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, P. R. China
2 Shenzhen Research Institute,Hong Kong Polytechnic University, Shenzhen 518057, P. R. China
3 Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
Abstract
Wavefront shaping (WFS) techniques have been used as a powerful tool to control light propagation in complex media, including multimode fibers. In this paper, we propose a new application of WFS for multimode fiber-based sensors. The use of a single multimode fiber alone, without any special fabrication, as a sensor based on the light intensity variations is not an easy task. The twist effect on multimode fiber is used as an example herein. Experimental results show that light intensity through the multimode fiber shows no direct relationship with the twist angle, but the correlation coe±cient (CC) of speckle patterns does. Moreover, if WFS is applied to transform the spatially seemingly random light pattern at the exit of the multimode fiber into an optical focus. The focal pattern correlation and intensity both can serve to gauge the twist angle, with doubled measurement range and allowance of using a fast point detector to provide the feedback. With further development, WFS may find potentials to facilitate the development of multimode fiber-based sensors in a variety of scenarios.

Tianting Zhong, Zhipeng Yu, Huanhao Li, Zihao Li, Haohong Li, Puxiang Lai. Active wavefront shaping for controlling and improving multimode fiber sensor[J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1942007.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!