首页 > 论文 > 光电工程 > 46卷 > 8期(pp:190070--1)

3 μm 波长Er:ZBLAN 光纤激光器研究进展

Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

波长在3 μm 附近的中红外Er 掺杂的氟化物(Er:ZBLAN)光纤激光器凭借其良好的光束质量、体积小、可盘绕、易于实现等优势广泛应用于工业、医疗、军事等领域。本文主要介绍了基于Er:ZBLAN 光纤激光器的发展现状,讨论了它们在发展中遇到的技术难题,总结并展望了其未来的发展方向。针对目前研究现状,提出多级放大将会是进一步提升3 μm Er:ZBLAN 光纤激光器单路激光功率的方法。为了突破单路激光的功率极限,将其与光纤合束技术融合将会成为未来的一个研究方向。

Abstract

Mid-infrared Er:ZBLAN fiber laser emitting at the wavelength of 3 μm is widely used in industry, medicine, military and other fields due to its advantages such as good beam quality, small size, coiling-ability and easy realization. In this paper, the development status of Er:ZBLAN fiber laser is introduced. The technical difficulties encountered in the development of Er:ZBLAN fiber laser are discussed. Moreover, their future development directions are also summarized and prospected. According to the current research situation, it is proposed that multi-stage amplification will be a method to further improve the single laser power of 3 μm Er:ZBLAN fiber laser. In order to breakthrough the power limit of single laser, the integration of single laser and fiber beam combination technology will become a research direction in the future.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.3;TN248

DOI:10.12086/oee.2019.190070

所属栏目:综述

基金项目:国家自然科学基金重大项目资助(61790584)

收稿日期:2019-02-21

修改稿日期:2019-05-20

网络出版日期:--

作者单位    点击查看

张新:中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林 长春 130033
舒世立:中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林 长春 130033
佟存柱:中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林 长春 130033

联系人作者:张新(zhang315xin@ciomp.ac.cn)

备注:张新(1991-),男,硕士,主要从事中红外光纤激光器的研究。

【1】Pan Q K. Progress of mid-infrared solid-state laser[J]. Chinese Journal of Optics, 2015, 8(4): 557–566.
潘其坤. 中红外固体激光器研究进展[J]. 中国光学, 2015, 8(4): 557–566.

【2】Sun X, Han L, Wang K Q. Progress in directly pumping of mid-infrared solid-state lasers[J]. Laser & Optoelectronics Progress, 2015, 54(5): 050007.
孙骁, 韩隆, 王克强. 直接抽运中红外固体激光器研究进展[J]. 激光与光电子学进展, 2015, 54(5): 050007.

【3】Wang Z X, Fan X. The development of infrared guided missiles and its key technologies[J]. Winged Missiles Journal, 2009(10): 14–19.
汪中贤, 樊祥. 红外制导导弹的发展及其关键技术[J]. 飞航导弹, 2009(10): 14–19.

【4】Wang R F, Zhang Y P, Xu Z Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 2007, 36(S1): 576–579.
王瑞凤, 张彦朴, 许志艳. 激光技术军事应用的现状及发展趋势[J]. 红外与激光工程, 2007, 36(S1): 576–579.

【5】Zhong M, Ren G. 3~5μm medium infrared laser countermeasure weapon system[J]. Sichuan Ordnance Journal, 2007, 28(1): 3–6.
钟鸣, 任钢. 3~5μm 中红外激光对抗武器系统[J]. 四川兵工学报, 2007, 28(1): 3–6.

【6】Han X, Jiang D W, Wang G W, et al. New Recent advances of mid-infrared lasers and detec-tors in antimonide-based nanostructures[J]. China Basic Science, 2017, 19(6): 41–46.
韩玺, 蒋洞微, 王国伟, 等. 锑化物纳米结构的中红外激光器与探测器的新进展[J]. 中国基础科学, 2017, 19(6): 41–46.

【7】Zhu X S, Zhu G W, Wei C, et al. Pulsed fluoride fiber lasers at 3 μm [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A15–A28.

【8】Tan G J, Xie J J, Zhang L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Journal of Optics, 2013, 6(4): 501–512.
谭改娟, 谢冀江, 张来明, 等. 中波红外激光技术最新进展[J]. 中国光学, 2013, 6(4): 501–512.

【9】Robinson M, Devor D P. Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3[J]. Applied Physics Letters, 1967, 10(5): 167–170.

【10】Wang L, Huang H T, Shen D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm[J]. Optics Express, 2014, 22(16): 19495–19503.

【11】Zhu X S, Jain R. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs[J]. Applied Optics, 2006, 45(27): 7118–7125.

【12】Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser[J]. Nature, 2002, 415(6874): 883–887.

【13】Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301–305.

【14】Brida D, Marangoni M, Manzoni C, et al. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier[J]. Optics Letters, 2008, 33(24): 2901–2903.

【15】Chalus O, Bates P K, Smolarski M, et al. Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz[J]. Optics Express, 2009, 17(5): 3587–3594.

【16】Chen Y B, Wang H Y, Lu Q S, et al. Optically pumped mid-infrared gas lasers[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010005.
陈育斌, 王红岩, 陆启生, 等. 光抽运中红外气体激光器[J]. 激光与光电子学进展, 2015, 52(1): 010005.

【17】Sorokina I T, Vodopyanov K L. Solid-State Mid-Infrared Laser Sources[M]. New York: Springer, 2003: 220–245.

【18】Shen D Y, Fan D Y. Mid-infrared Lasers[M]. Beijing: National Defense Industry Press, 2015: 152–163.
沈德元, 范滇元. 中红外激光器[M]. 北京: 国防工业出版社, 2015: 152–163.

【19】Kim J S, Park R H. Feature-based block matching algorithm using integral projections[J]. Electronics Letters, 1989, 25(1): 29–30.

【20】Zhu X S, Jain R. Compact 2W wavelength-tunable Er:ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381–2383.

【21】Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 2007, 32(1): 26–28.

【22】Huang Y F, Peng Y F, Wei X B, et al. Watt-level mid-infrared 2.8μm mid-infared Er:ZBLAN fiber laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502007.
黄园芳, 彭跃峰, 魏星斌, 等. 瓦级连续波2.8μm 中红外Er:ZBLAN 光纤激光器[J]. 中国激光, 2012, 39(5): 0502007.

【23】Shen Y L, Huang K, Zhou S Q, et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502008.
沈炎龙, 黄珂, 周青松, 等. 10W 级高效率单模中红外2.8μm 光纤激光器[J]. 中国激光, 2015, 42(5): 0502008.

【24】Yang Q L, Miao L L, Jiang G B, et al. Modeling the broadband mid-infrared dispersion compensator based on ZBLAN microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(7): 728–731.

【25】Tokita M, Murakami S, Shimizu M, et al. Liquid-cooled 24W mid-infrared Er:ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 3062–3064.

【26】Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800nm[J]. Optics Letters, 2007, 32(5): 454–456.

【27】Bernier M, Faucher D, Caron N, et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941–16946.

【28】Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882–2885.

【29】Aydin Y O, Faucher V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542–4545.

【30】Ma W Z, Wang T S, Wang F R, et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 2018, 45(10): 170662.
马万卓, 王天枢, 王富任, 等. 2μm 可调谐高重复频率主动锁模光纤激光器[J]. 光电工程, 2018, 45(10): 170662.

【31】Li W W, Huang Y Z, Luo Z Q. Composite two-dimensional material GO-MoS2-based Passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653.
李维炜, 黄义忠, 罗正钱. 复合二维材料GO-MoS2锁模掺铒光纤激光器[J]. 光电工程, 2018, 45(10): 170653.

【32】Hu X L, Yan Z J, Huang Q Q, et al. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741.
胡啸林, 闫志君, 黄千千, 等. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J]. 光电工程, 2018, 45(10): 170741.

【33】Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706–707.

【34】Tokita S, Murakami M, Shimiz S, et al. 12W Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 2812–2814.

【35】Shen Y L, Wang Y S, Luan K P, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 2017, 123(4): 105.

【36】Shen Y L, Wang Y S, Luan K P, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659.

【37】Zhang T, Feng F Y, Zhang H, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film[J]. Laser Physics Letters, 2016, 13(7): 075102.

【38】Tang P H, Wu M, Wang Q K, et al. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573–1576.

【39】Wei C, Wang X S, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233–3236.

【40】Tokita S, Murakami M, Shimizu S, et al. Graphene Q-switching of a 3 μm Er:ZBLAN fiber laser[C]//Proceedings of Advanced Solid-State Lasers Congress, 2013.

【41】Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713–24718.

【42】Ning S G, Feng G Y, Dai S Y, et al. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 2018, 8(2): 025121.

【43】Yang L L, Kang Z, Huang B, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 2018, 43(21): 5459–5462.

【44】Wang S W, Tang Y L, Yang J L, et al. MoS2 Q-switched 2.8 μm Er:ZBLAN fiber laser[J]. Laser Physics, 2019, 29(2): 025101.

【45】Wang S Q, Deng Y, Zhang Y L, et al. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+:ZBLAN fiber laser[J]. Acta Physica Sinica, 2016, 65(4): 044206.
王少奇, 邓颖, 张永亮, 等. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生[J]. 物理学报, 2016, 65(4): 044206.

【46】Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623–626.

【47】Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226–4228.

【48】Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855–4858.

【49】Qin Z P, Xie G Q, Zhao C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56–59.

【50】Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7–10.

【51】Shen Y L, Wang Y S, Chen H W, et al. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser[J]. Scientific Reports, 2017, 7: 14913.

【52】Shu S L, Hou G Y, Feng J, et al. Progress of optically pumped GaSb based semiconductor disk laser[J]. Opto-Electronic Advances, 2018, 1(2): 170003.

引用该论文

Zhang Xin,Shu Shili,Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070

张新,舒世立,佟存柱. 3 μm 波长Er:ZBLAN 光纤激光器研究进展[J]. 光电工程, 2019, 46(8): 190070

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF