首页 > 论文 > 光子学报 > 48卷 > 9期(pp:912002--1)

基于帕尔贴效应的双波段自适应标定板设计

Design of Dualband Adaptive Calibration Checkerboard Based on Peltier Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为精确标定可见光和红外双波段相机系统, 减少标定板数量并增加对相机响应波段的适应性, 设计了一种基于帕尔贴效应的双波段自适应标定板, 以解决以往大尺寸标定板制造困难的问题.通过控制电路中的电流产生不同强度的红外辐射, 实现对相机系统响应波段的自适应.从双目超大视场长波红外相机拍摄的图像中可以看出, 该标定板标定角点数量多, 能够满足超大视场需求; 标定角点清晰, 对比度高; 红外辐射均匀性、稳定性好.性能测试结果表明, 标定角点重投影误差达到亚像素级别, 标定参数误差均在1%以内, 畸变校正效果好.

Abstract

In order to accurately calibrate the dualband camera system with visible light and infrared lens, reduce the number of calibration plates and increase the adaptability to the camera response band, a dualband adaptive calibration checkerboard based on the Peltier effect is designed, which solves the problem of the difficulty in manufacturing largesize calibration plates. Different intensity infrared radiation is generated by controlling the current in the circuit, achieving the adaptation of the response band of the camera system. It can be seen from the images taken by the binocular ultrawide angle longwave infrared camera that the calibration checkerboard has a large number of points, which can meet the requirements of large field of view. Besides, the calibration corners are clear, the contrast is high, and the infrared radiation uniformity and the stability are good. After the performance test, the calibration corner reprojection error reaches the subpixel level, the calibration parameter error is within 1%, and distortion correction effect is good.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/gzxb20194809.0912002

基金项目:国家自然科学基金(No.61801507), 陆军工程大学基础前沿创新项目

收稿日期:2019-05-05

修改稿日期:2019-07-06

网络出版日期:--

作者单位    点击查看

王子昂:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
黄富瑜:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
邹昌帆:南京军代局驻扬州地区军代室, 江苏 扬州 225009
刘秉琦:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
王元铂:陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003

联系人作者:王子昂(wangziang_optics@163.com)

备注:王子昂(1994-), 男, 硕士研究生, 主要研究方向为计算机视觉.

【1】KOMASTU S, MARKMAN A, MAHALANOBIS A, et al. Threedimensional integral imaging and object detection using longwave infrared imaging[J]. Applied Optics, 2017, 56(9): D120D126.

【2】LI Weimin, SHAN Siyu, LIU Hui. Highprecision method of binocular camera calibration with a distortion model[J]. Applied Optics, 2017, 56(8), 23682377.

【3】VIALA R, CARLO S, SALMERON S, et al. Calibration of a trinocular system formed with wide angle lens cameras[J]. Optics Express, 2012, 20(25): 2769127696.

【4】CUI Yi, ZHOU Fuqiang, WANG Yexin, et al. Precise calibration of binocular vision system used for vision measurement[J]. Optics Express, 2014, 22(8): 91349149.

【5】SUN Qian, WANG Xiaoyi, XU Jiping, et al. Camera selfcalibration with lens distortion[J]. Optik, 2016, 127(10): 45064513.

【6】SUN Huajun, LIU Zhen, ZHANG Guangjun, et al. Camera calibration based on flexible 3D target[J]. Acta Optica Sinica, 2009, 29(12): 34333439.
孙军华, 刘震, 张广军, 等. 基于柔性立体靶标的摄像机标定[J].光学学报, 2009, 29(12): 34333439.

【7】YU Minglang,WEI Zhenzhong, SUN Junhua. Onspot camera calibration method based on flexible planar target[J]. Beihang University, 2009, 35(3): 348350.
余明浪, 魏振忠, 孙军华. 基于柔性平面靶标的摄像机现场标定方法[J]. 北京航空航天大学学报, 2009, 35(3): 348350.

【8】LI Weimin, YU Qiaoyun, LIU Chao. Calibration method with separation pattern of a singlecamera based on difference coordinates[J]. Acta Optica Sinica, 2006, 26(5): 697701.
李为民, 俞巧云, 刘超. 采用分离式差分标定标定靶的单摄像机标定方法[J]. 光学学报, 2006, 26(5): 697701.

【9】LIN Wukang. Research on camera calibration method of wide field[D]. Harbin: Harbin Institute of Technology, 2011: 1342.
林武康. 摄像机大视场标定方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 1342.

【10】SHINKO Y, CHENG, SANGHO P, et al. Multiperspective thermal IR and video arrays for 3D body tracking and driver activity analysis[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 23.

【11】NG Y H, DU R. Acquisition of 3D surface temperature distribution of a car body[C]. 2005 IEEE International Conference on Information Acquisition, 2005: 1620.

【12】WU Zhijian, MEADOWS G A. 2D surface reconstruction of water waves[C]. Conference Proceedings on Engineering in the Ocean Environment. 2005: 102107.

【13】SVOBODA T S, MARTINEC D, PAJDAL T S, A convenient multicamera selfcalibration for virtual environments[J]. Teleoperators Virtual Environ. 2005, 14(4): 407422.

【14】JOHNSON M J, BAJCSY P. Integration of thermal and visible imagery for robust foreground detection in teleimmersive spaces[C]. 11th International Conference on Information Fusion, 2008: 18.

【15】VIDAS S, LAKEMON R. A maskbased approach for the geometric calibration of thermalinfrared cameras[J]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(6): 16251635.

【16】PENG En, LI Ling.Camera calibration using onedimensional information and its application in both controlled and uncontrolled environments[J]. Pattern Recognition, 2010, 43(3): 11881198.

【17】JUHO K, SAMI S B. A generic camera model and calibration method for conventional, wideangle, and fisheye lenses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(8): 13351340.

【18】BOUGUET J Y. Camera calibration toolbox for Matlab [EB/OL][20190505]. http: //www.vision.caltech.edu/bouguetj/calib_doc/.

引用该论文

WANG Ziang,HUANG Fuyu,ZOU Changfan,LIU Bingqi,WANG Yuanbo. Design of Dualband Adaptive Calibration Checkerboard Based on Peltier Effect[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0912002

王子昂,黄富瑜,邹昌帆,刘秉琦,王元铂. 基于帕尔贴效应的双波段自适应标定板设计[J]. 光子学报, 2019, 48(9): 0912002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF