首页 > 论文 > 量子电子学报 > 36卷 > 5期(pp:521-527)

基于TDLAS技术的吸入便携式甲烷探测仪研制

Development of inhaled portable methane detector based on TDLAS technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了满足城市管网日常维护中对甲烷(CH4)泄漏检测的需求, 研制了一种基于可调谐半导体激光吸收光谱(TDLAS)技术的吸入便携式CH4探测仪,其重量仅为1.4 kg, 体积为22 cm×10 cm×10 cm。仪器内部采用中心波长为1654 nm的分布反馈式激光器作为光源, 集成了物理基长8.5 cm、有效光程2.25 m的光学多通池。系统基于STM32F405单片机控制激光器产生稳定的调制 激光,配合信号采集处理单元实现对吸收信号的采集,并利用数字锁相放大器提取信号中的二次谐波分量,反演 得到待测气体浓度。对探测仪进行标定和稳定性实验,结果表明二次谐波信号幅值与气体浓度有良好的线性关系, 系统测量精 度为±3.05%, 仪器的最小可探测极限为0.88 ppm, 其精度与便携性满足实际检测需求。

Abstract

In order to meet the requirement for detecting the methane (CH4) leakage in the daily maintenance of the network of gas pipelines in cities, an inhaled portable CH4 detector based on tunable diode laser absorption spectroscopy (TDLAS) technique has been developed, whose weight is only 1.4 kg and volume is 22 cm×10 cm×10 cm. A distributed feedback laser with a central wavelength of 1654 nm is used as the light source in the instrument and an optical multi-pass cell with a physical basic length of 8.5 cm and an effective optical path of 2.25 m is integrated. The system based on STM32F405 generates a stable modulation laser by controlling laser, and acquires the absorption signal by the signal acquisition and process unit, then a digital lock-in amplifier is used to extract the second harmonic component in the signal to get the concentration of gas. Calibration and stability tests of the detector are carried out. Results show that there is a good linear relationship between the amplitudes of second harmonic signal and gas concentrations. The measurement accuracy of system is ±3.05% and the minimum detectable limit is 0.88 ppm. The precision and portability of the instrument meet the requirements of actual measurement.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3969/j.issn.1007-5461. 2019.05.002

所属栏目:光谱

基金项目:Supported by State Key Project of Research and Development Plan (国家重点研发计划, 2016YFC0303900, 2017YFC0209700)

收稿日期:2019-03-20

修改稿日期:2019-04-10

网络出版日期:--

作者单位    点击查看

刘 杰:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
董 洋:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
古明思:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
陈家金:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
谈 图:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026

联系人作者:刘杰(nqjxlj@mail.ustc.edu.cn)

备注:刘 杰 (1992-), 安徽合肥人,研究生,主要从事信号处理方面的研究。

【1】Yang Mengmeng, Yuan Mei, Xu Shiqing. Analysis of danger source of mine gas explosion based on Petri nets[J]. Industry and Mine Automation(工矿自动化), 2015, 41(9): 67-70 (in Chinese).

【2】Liu Wei, Zhou Yi. Design of coal mine methane concentration detection system based on ZigBee[J]. Computer Measurement and Control(计算机测量与控制), 2018, 26(1): 68-70, 75 (in Chinese).

【3】Han Hui, Kang Liang, Yang Yi, et al. Discussion on detection method of buried pipeline in gas transmission statio[J]. Petroleum Planning and Engineering(石油规划设计), 2015, 26(5): 46-48 (in Chinese).

【4】Zhang Sumin, Jiang Yuejun, Han Xiaoyu, et al. Rapid determination of 14 components in natural gas by GC[J]. Physical Testing and Chemical Analysis(理化检验), 2015, 51(9): 893-89(in Chinese).

【5】Xu Liping. Based on scattered infrared (NDIR) principle of coal mine CH4 detector design[J]. Coal Mine Machinery(煤矿机械), 2012, 33(10): 262-263 (in Chinese).

【6】Yang Ruiming. Performances of five kinds of portable exhaust gas analyzer and their applications in environmental monitoring[J]. Analytical Instruments(分析仪器), 2018, 5: 144-147 (in Chinese).

【7】Chen Jiajin, Wang Guishi, Liu Kun, et al. High sensitivity detection of carbon dioxide based on portable cylindrical multi-pass cell[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(1): 292-29(in Chinese).

【8】Jiang Chunlei, Liu Yunfei, Yu Bo, et al. TDLAS-WMS second harmonic detection based on spectral analysis[J]. Review of Scientific Instruments, 2018, 89(8): 083106.

【9】Jiang Jun, Zhao Mingxin, Ma Guoming, et al. TDLAS-based detection of dissolved methane in power transformer oil and field application[J]. IEEE Sensors Journal, 2018, 18(6): 2318-2325.

【10】Duan Shangru, Tan Zengqiao, Wang Qi, et al. Research on laser methane detection system based on TDLAS[J]. Electronic Measurement Technology, 2018, 41(1): 101-104.

【11】Antoine G, Philippe J, Wei S, et al. Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1-8.

【12】Mei Jiaoxu, Wang Lei, Tan Tu, et al. Application of Raman fiber amplifier in remote sensing detection[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2016, 33(3): 311-31(in Chinese).

【13】Zhou Xin. Diode laser absorption sensors for combustion control[J]. Papers in Regional Science, 2005, 84(2): 183-199.

【14】Reid J, Labrie D. Second-harmonic detection with tunable diode lasers-comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.

引用该论文

LIUJie,DONG Yang,GU Mingsi,CHEN Jiajin,TAN Tu,GAO Xiaoming. Development of inhaled portable methane detector based on TDLAS technique[J]. Chinese Journal of Quantum Electronics, 2019, 36(5): 521-527

刘 杰,董 洋,古明思,陈家金,谈 图,高晓明. 基于TDLAS技术的吸入便携式甲烷探测仪研制[J]. 量子电子学报, 2019, 36(5): 521-527

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF