首页 > 论文 > 半导体光电 > 40卷 > 5期(pp:631-636)

基于全电介质复合纳米天线荧光传感器的研究

Research on Fluorescence Sensor Based on All-Dielectric Hybrid Nano-Antenna

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了增强量子点的定向发光强度, 提出了一种由硅柱二聚体和二氧化钛圆盘组成的复合纳米天线结构。利用时域有限差分方法系统研究了硅柱二聚体的轴参数、截面类型以及复合纳米天线结构对量子点定向发光增强的影响。结果表明, 对于中心波长为600nm的量子点, 硅柱二聚体的轴参数对量子点的发光影响不大, 椭圆形截面的硅柱二聚体可以实现较大的量子点发光增强。此外, 在复合纳米天线的作用下, 不仅可以获得较大的量子效率增强, 还可以实现量子点高度定向的发射效果, 量子效率增强约6倍, 定向收集效率可以达到50%。

Abstract

In order to enhance the directional luminescence intensity of quantum dots, a hybrid nano-antenna structure composed of a silicon column dimer and a titania dioxide disk was proposed. The effects of the axis parameters, profile type of silicon column dimer and hybrid nano-antenna structure on the directional emission enhancement of quantum dot were investigated by using the finite difference time domain method. The results show that the silicon column dimer with different axial parameters has little effect on quantum dot emission at the central wavelength of 600nm, and silicon column dimer with elliptical profile can achieve larger quantum dot luminescence enhancement. In addition, under the effect of hybrid nano-antenna, both the quantum efficiency enhancement and the highly-directional emission effect of quantum dot can be achieved, and the former is enhanced by about 6 times and the directional collection efficiency can reach 50%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.16818/j.issn1001-5868.2019.05.006

所属栏目:光电器件

基金项目:国家自然科学基金项目(11674239, 61307069).

收稿日期:2019-05-09

修改稿日期:--

网络出版日期:--

作者单位    点击查看

全宏升:太原理工大学 1. 新型传感器与智能控制教育部/山西省重点实验室2. 物理与光电工程学院, 太原 030024
曹文静:太原理工大学 1. 新型传感器与智能控制教育部/山西省重点实验室2. 物理与光电工程学院, 太原 030024
陈智辉:太原理工大学 1. 新型传感器与智能控制教育部/山西省重点实验室2. 物理与光电工程学院, 太原 030024

联系人作者:陈智辉(huixu@126.com)

备注:全宏升(1993-), 男, 陕西西安人, 硕士研究生, 主要从事微纳光电子学方面的研究。

【1】Zhang Z, Ye Y, Pu C, et al. High-performance, solution-processed and insulating-layer-free light-emitting diodes based on colloidal quantum dots[J]. Adv. Mater., 2018, 30(28): 1801387.

【2】陈雯柏, 叶继兴, 伊丽娜, 等. 量子点发光器件的制备与仿真分析[J]. 半导体光电, 2017, 38(4): 488-492.
Chen Wenbai, Ye Jixing, Yi Lina, et al. Preparation and simulation analysis of quantum dots luminescence devices[J]. Semiconductor Optoelectronics, 2017, 38(4): 488-492.

【3】Granados J A O, Thangarasu P, Singh N, et al. Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging[J]. Food Chemistry, 2019, 278: 523-532.

【4】McHugh K J, Jing L, Behrens A M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents[J]. Adv. Mater., 2018, 30(18): 1706356.

【5】Chen W, Long K D, Yu H, et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy[J]. Analyst, 2014, 139(22): 5954-5963.

【6】聂诚磊, 杨晓红, 韩 勤. 量子点单光子探测器的研究进展[J]. 半导体光电, 2013, 34(4): 542-548.
Nie Chenglei, Yang Xiaohong, Han Qin. Research progress of quantum dot single photon detector[J]. Semiconductor Optoelectronics, 2013, 34(4): 542-548.

【7】Andersen S K H, Bogdanov S, Makarova O, et al. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photon., 2018, 5(3): 692-698.

【8】Hwang E, Smolyaninov I I, Davis C C. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces[J]. Nano Lett., 2010, 10(3): 813-820.

【9】Liaw J W, Chen C S, Chen J H. Enhancement or quenching effect of metallic nanodimer on spontaneous emission[J]. J. of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(3): 454-465.

【10】Lu G, Zhang T, Li W, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The J. of Phys. Chem. C, 2011, 115(32): 15822-15828.

【11】Chou R Y, Lu G, Shen H, et al. A hybrid nanoantenna for highly enhanced directional spontaneous emission[J]. J. of Appl. Phys., 2014, 115(24): 244310.

【12】Rusak E, Staude I, Decker M, et al. Hybrid nanoantennas for directional emission enhancement[J]. Appl. Phys. Lett., 2014, 105(22): 221109.

【13】Ee H S, Kang J H, Brongersma M L, et al. Shape-dependent light scattering properties of subwavelength silicon nanoblocks[J]. Nano Lett., 2015, 15(3): 1759-1765.

【14】Evlyukhin A B, Novikov S M, Zywietz U, et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region[J]. Nano Lett., 2012, 12(7): 3749-3755.

【15】Staude I, Miroshnichenko A E, Decker M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 7824-7832.

【16】Krasnok A, Caldarola M, Bonod N, et al. Spectroscopy and biosensing with optically resonant dielectric nanostructures[J]. Adv. Opt. Mater., 2018, 6(5): 1701094.

【17】Cambiasso J, Konig M, Cortes E, et al. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photon., 2018, 5(4): 1546-1557.

【18】Palik E D. Handbook of Optical Constants of Solids[M]. Burlington: Academic Press, 1997: xvii-xviii.

【19】Bodurov I, Vlaeva I, Viraneva A, et al. Modified design of a laser refractometer[J]. Nanosci. Nanotechnol., 2016, 16: 31-33.

【20】Kane Y. Numerical solution of initial boundary value problems involving maxwells equations in isotropic media[J]. IEEE Trans. on Antennas and Propagation, 1966, 14(3): 302-307.

【21】Chen Z, He L, Wang Y, et al. Effects of size and distribution of silver nanoparticles on directional fluorescence emission enhancement[J]. IEEE Photon. J., 2017, 9(1): 1-8.

【22】Rogobete L, Kaminski F, Agio M, et al. Design of plasmonic nanoantennae for enhancing spontaneous emission[J]. Opt. Lett., 2007, 32(12): 1623-1625.

【23】Devilez A, Stout B, Bonod N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6): 3390-3396.

引用该论文

QUAN Hongsheng,CAO Wenjing,CHEN Zhihui. Research on Fluorescence Sensor Based on All-Dielectric Hybrid Nano-Antenna[J]. Semiconductor Optoelectronics, 2019, 40(5): 631-636

全宏升,曹文静,陈智辉. 基于全电介质复合纳米天线荧光传感器的研究[J]. 半导体光电, 2019, 40(5): 631-636

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF