首页 > 论文 > 光谱学与光谱分析 > 39卷 > 10期(pp:3078-3083)

基于离轴腔增强吸收光谱双组分CH4/H2O高灵敏度探测研究

High Sensitivity Detection of Two-Component CH4/H2O Based on Off-Axis Cavity Enhanced Absorption Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

H2O和CH4在气候变化过程中起着关键作用, 实时在线测量H2O和CH4浓度一直都是国内外学者研究的热点问题之一。 利用1.653 μm可调谐半导体激光器作光源, 结合反射率为99.997 6%的两片高反射镜组成离轴腔增强吸收光谱装置, 开展了H2O和CH4的高灵敏度测量研究。 离轴腔增强系统的有效吸收光程通过吸收面积-浓度关系法来标定, 吸收面积-浓度关系法的可行性首先通过已知光程的光学吸收池进行验证, 确定有效后用于标定离轴腔增强系统的有效光程。 结果表明, 基长为21 cm的离轴腔增强系统的有效吸收光程达到了8 626.3 m。 当谐振腔内压力为5.06 kPa时, 利用7组不同浓度的CH4标准气体(0.2~1.4 μmol·mol-1)对系统进行了线性响应标定测试, 得到了CH4吸收的积分面积与浓度拟合关系曲线。 系统的稳定性、 可实现的最小探测灵敏度等信息通过Allan方差进行分析, 结果表明系统对探测CH4的最佳平均时间为100 s, 最小可探测浓度极限为7.5 nmol·mol-1; 系统对探测H2O的最佳平均时间为200 s, 最小可探测浓度极限为55 μmol·mol-1。 对提高系统测量精度的数据处理方法也进行了分析研究, 结果表明相比于多次平均方法, Kalman滤波能显著的提高测量精度, 而且缩短了系统的响应时间。 最后, 利用搭建的离轴腔增强实验系统结合Kalman滤波数据处理方法对实际大气中CH4和H2O浓度进行了连续两天的测量, CH4每天平均的浓度分别为2.1和2.08 μmol·mol-1, H2O每天平均的浓度分别为11 515.6和11 628.6 μmol·mol-1, 由此可知建立的离轴腔增强吸收光谱装置能够用于大气CH4和H2O的测量, 另外建立的系统也可用于相关工业领域的高灵敏度CH4和H2O监测。

Abstract

H2O and CH4 play key roles in the process of climate change, then real-time online measurement of H2O and CH4 concentrationshas always been one of the hot issues of domestic and foreign scholars. In this paper, an off-axis cavity enhanced absorption spectroscopy device was establishedwith two high reflectivity mirrors of 99.997 6% combining a tunable semiconductor laser operating around 1.653 μm as the light source, andthe high sensitivity measurement of H2O and CH4 was carried out. The effective absorption optical path of the system was calibrated by the absorption area-concentration relationship. The feasibility of the absorption area-concentration relationship was first verified by an optical absorption cell with a known optical path, and it was used to calibrate effective optical path of the cavity enhancement system. The results showed that the effective absorption path of the cavity enhancement system with the base length of 21 cm reached 8 626.3 m. The linear response calibration test was carried out with 7 groups of CH4 standard gases of different concentrations (0.2~1.4 μmol·mol-1) when the pressure was 5.06 kPa, and the fitting relationship curve between the integrated area of CH4 absorption and the concentration was obtained. The stability of the system and the minimum detectable sensitivity were analyzed by Allan variance. The results showed that the optimal average time for detecting CH4 was 100 s, and the minimum detectable concentration limit was 7.5 nmol·mol-1. The optimal average time for detecting H2O was 200 s, and the minimum detectable concentration limit was 55 μmol·mol-1. The data processing method for improving the measurement precision of the system was also analyzed. The results showed that Kalman filtering could greatly improve the measurement precisionand reduce the response time of the systemcompared to the multiple averaging method. Finally, the experimental system of off-axis cavity enhanced absorption spectroscopy device combining with Kalman filtering technology was used to measure the CH4 and H2O concentration in real atmosphere for two days. The average daily concentration of CH4 was 2.1 and 2.08 μmol·mol-1, respectively. The average daily concentration of H2O was 11 515.6 and 11 628.6 μmol·mol-1, respectively. It can be seen that the experimental device of off-axis integration cavity can be used for atmospheric CH4 and H2O detection, andthe established system can also be used for high-sensitivity CH4 and H2O monitoring in relevant industrial fields.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433

DOI:10.3964/j.issn.1000-0593(2019)10-3078-06

基金项目:国家重点研发计划(2017YFC0209700, 2016YFC0303900), 国家自然科学基金项目(41730103, 41575030)资助

收稿日期:2019-03-25

修改稿日期:2019-07-18

网络出版日期:--

作者单位    点击查看

田 兴:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽理工大学, 深部煤矿采动响应与灾害防控国家重点实验室, 安徽 淮南 232001中国科学技术大学, 安徽 合肥 230026
曹 渊:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
王静静:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
陈家金:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
刘 锟:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
谈 图:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
王贵师:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:田兴(txtian@mail.ustc.edu.cn)

备注:田 兴, 1990年生, 中国科学技术大学科学岛分院博士研究生

【1】Schultz C Eos. Transactions American Geophysical Union, 2014, 95(12): 108.

【2】Lang N, Macherius U, Wiese M, et al. Optics Express, 2016, 24(6): A536.

【3】Dong L, Li C G, Sanchez N P, et al. Applied Physics Letters, 2016, 108(1): 011106.

【4】Liu K, Wang L, Tan T, et al. Sensors and Actuators B: Chemical, 2015, 220: 1000.

【5】Bolshov M A, Kuritsyn Y A, Romanovskii Y V. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 106: 45.

【6】Zolot A M, Giorgetta F R, Baumann E, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 118: 26.

【7】Nikitin A V, Lyulin O M, Mikhailenko S N, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 154: 63.

【8】Mikhailenko S, Kassi S, Mondelain D, et al. Journal of Quantitative Spectroscopy & Radiative Transfer, 2016, 179: 198.

【9】LI Zhi-bin, MA Hong-liang, CAO Zhen-song, et al(李志彬, 马宏亮, 曹振松, 等). Acta Physica Sinica(物理学报), 2016, 65(5): 053301.

【10】Zhang X C, Guo C J. Chinese Physics B, 2013, 22(12): 128401.

引用该论文

TIAN Xing,CAO Yuan,WANG Jing-jing,CHEN Jia-jin,LIU Kun,TAN Tu,WANG Gui-shi,GAO Xiao-ming. High Sensitivity Detection of Two-Component CH4/H2O Based on Off-Axis Cavity Enhanced Absorption Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3078-3083

田 兴,曹 渊,王静静,陈家金,刘 锟,谈 图,王贵师,高晓明. 基于离轴腔增强吸收光谱双组分CH4/H2O高灵敏度探测研究[J]. 光谱学与光谱分析, 2019, 39(10): 3078-3083

被引情况

【1】董洋,王静静,周心禺,朱公栋,曲康,吴祥恩,吕万军,温明明,谈图,刘锟,高晓明. 基于离轴积分腔输出光谱的深海可燃冰探测技术. 中国激光, 2020, 47(8): 811003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF