首页 > 论文 > 量子电子学报 > 36卷 > 6期(pp:709-713)

氢钟信号传输后的末端噪声过滤

Terminal noise filtration of hydrogen clock signal after transmission

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

低相位噪声、高频率稳定度的10 MHz氢钟信号(HCS)是精密测量物理实验中 不可缺少的微波频率基准。HCS在经过一定距离的传输后,由于受到周围电磁噪声和振动的干扰,其相位噪声和短期 频率稳定度会恶化。介绍了一种过滤HCS传输后的末端噪声的方案,用于改善HCS的相位噪声和短期稳定度。 该方案基于将恒温高稳晶振(OCXO)相位锁定到HCS上,使氢钟1 s内的相位噪声和频率稳定度由OCXO决定, 而长期稳定度跟随HCS。经过该过滤方案后, HCS的功率从-4.4 dBm放大到5 dBm, 末端相位噪声本底 降低约10 dB, 且消除了所有高于1 Hz的干扰。该系统可在不对实验室氢钟及其信号传输网络做改动的 情况下,有效提高HCS 频率的纯度,进而提高精密测量实验的精度。

Abstract

The low phase-noise and high frequency-stability 10 MHz hydrogen clock signal (HCS) is the indispensable microwave frequency reference for physics experiments of precision measurement. After transmitted over a certain distance, the phase noise and short-term stability of the HCS will be downgraded due to the disturbance of the external electromagnetic noise and vibration. A scheme to filter the terminal noise of the HCS after transmission is introduced, which reduces the phase noise and improves the short-term stability of the HCS. The scheme is based on phase-locking of an oven-controlled crystal oscillator (OCXO) to the HCS, the phase noise and frequency stability of the reference signal at shorter than 1 s is defined by the OCXO, while the long-term stability follows the HCS. After the filtering scheme, the power of the HCS is amplified from -4.4 dBm to 5 dBm, the terminal phase noise background of the HCS is reduced about 10 dB, and all disturbance higher than 1 Hz are eliminated. The system can dramatically purify the HCS without changing the laboratory hydrogen clock and the HCS transmitting network, and then the accuracy of precision measurement experiment is improved.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TM935

DOI:10.3969/j.issn.1007-5461. 2019.06.011

所属栏目:激光技术与器件

基金项目:Supported by Major Research Plan of National Natural Science Foundation of China (国家自然科学基金重点项目和重大研究计划, 91636110), Joint Funds of National Natural Science Foundation of China (国家自然科学基金联合基金项目, U1738141), Strategic Priority Research Program of Chinese Academy of Sciences (中国科学院战略性先导科技专项(), XDB21010300), National Key R&D Program of China (国家重点研发计划, 2017YFA0304403)

收稿日期:2019-03-05

修改稿日期:2019-04-08

网络出版日期:--

作者单位    点击查看

姚博文:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071中国科学院大学, 北京 100049
孙焕尧:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
陈群峰:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071

联系人作者:姚博文(1783324062@qq.com)

备注:姚博文 (1993-), 甘肃天水人,研究生,主要从事光频比对中电子电路方面的研究。E-mail: 1783324062@qq.com

【1】Gao Yuping, Wang Pingli, Feng Ruiquan. Application of GNSS CV precise time service system [J]. Journal of Time and Frequency (时间频率学报), 2016, 3: 170-177 (in Chinese).

【2】Dong Shaowu. Study on Several Important Technical Issues in Time-Keeping (守时中的若干重要技术问题研究)[D]. Xi’an: Doctorial Dissertation of National Time Service Center, Chinese Academy of Sciences, 2007: 13-2(in Chinese).

【3】Wang Wenming. The current development of atomic hydrogen clock and the future technology development trends in China [J]. Navigation Positioning and Timing (导航定位与授时), 2015, 2(6): 48-54 (in Chinese).

【4】Yang Wenke. Phase Noise Analysis and Identification of Time-Frequency Signals (时频信号相位噪声分析与辨识研究)[D]. Changsha: Master Thesis of National University of Defense Technology, 2008: 1-25 (in Chinese).

【5】Gao Shuting, Liu Hongsheng. Analysis of phase noise and its effects on circuit systems [J]. Fire Control Radar Technology (火控雷达技术), 2003, 32(2): 58-63 (in Chinese).

【6】Audoin C, Vanier J. Atomic frequency standards and clocks [J]. Journal of Physics E Scientific Instruments, 1976, 9(9): 697.

【7】Yan Lulu. Research of Er-Doped Fiber Femtosecond Optical Frequency Comb (掺铒光纤飞秒光梳的研究)[D]. Xi’an: Master Thesis of Shanxi University of Science and Technology, 2014: 1-8 (in Chinese).

【8】Vanier J, Tetu M. Phase-Locked loops used with masers: Atomic frequency standards [J]. IEEE Transactions on Communications, 1982, 30(10): 2355-2361.

【9】Vanier J, Tetu M, Bernier L G. Transfer of frequency stability from an atomic frequency reference to a quartz-crystal oscillator [J]. IEEE Transactions on Instrumentation and Measurement, 1979, 28(3): 188-193.

【10】Zhou Zhongshi. High stability phase-locked receiver for hydrogen atomic clock [J]. Journal of Astronautic Metrology and Measurement (宇航计测技术), 1987, 3: 9-17 (in Chinese).

【11】Xie Yan, Cai Yong, Zhang Weiqun. Experiments on the phase-locked loop contribution on specifications of the masers [J]. Acta Metrologica Sinica (计量学报), 2012, 33(3): 272-277 (in Chinese).

【12】Li Fengman. Frequency response analysis of amplifying circuit [J]. Journal of Liaoning University (辽宁大学学报), 2003, 30(2): 140-144 (in Chinese).

【13】Zhen Junli, Ying Qiyan. Signals and Systems (信号与系统) [M]. Beijing: High Education Press, 2008: 173-224 (in Chinese).

【14】Cai Yong, Lin Chuanfu, Shen Jiliang. Development of high precision atomic clock frequency stability tester [J]. Shanghai Astronomical Observatory (上海天文台年刊), 2000: 148-152 (in Chinese).

【15】Yang Zheng. LabVIEW-based automatic test and analysis system of frequency stability [J]. Metrology and Measurement Technique (计量与测试技术), 2018, 45(7): 74-75 (in Chinese).

【16】San Jose. Symmetricom. A Phase Noise Test Probe [M]. San Jose: Symmetricom, Inc, 2012: 1-34.

引用该论文

YAO Bowen,SUN Huanyao,CHEN Qunfeng. Terminal noise filtration of hydrogen clock signal after transmission[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 709-713

姚博文,孙焕尧,陈群峰. 氢钟信号传输后的末端噪声过滤[J]. 量子电子学报, 2019, 36(6): 709-713

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF