首页 > 论文 > 激光技术 > 43卷 > 6期(pp:834-840)

EEMGSM光束在各向异性湍流中的光束质量因子研究

M2 factor of electromagnetic elliptic multi-Gaussian-Schell mode beam in anisotropic turbulence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了探究矢量椭圆多高斯-谢尔模(EEMGSM)光束的传输特性, 基于广义惠更斯-菲涅耳原理和维格纳分布函数的二阶矩理论, 理论推导了EEMGSM光束在各向异性湍流中传输的质量因子解析表达式。通过数值计算和分析, 探究了初始偏振度、初始相干度、腰宽、波长和湍流结构常数等与质量因子的变化规律。结果表明,EEMGSM光束的质量因子随着阶数、波长和腰宽的增大而减小; 随着初始相干度和湍流结构常数的减小而减小; 在相同条件下, 具有大初始偏振度的EEMGSM光束的光束质量受各向异性的影响小于具有小初始偏振度的EEMGSM光束的光束质量; 且在相同条件下, EEMGSM光束的质量因子比标量椭圆高斯-谢尔模(EGSM)光束小, 即EEMGSM光束具有缓解各向异性湍流影响的优点。所得结论对于自由空间光通信的研究具有一定的理论参考价值。

Abstract

In order to investigate the propagation characteristics of electromagnetic elliptical multi-Gaussian-Schell mode (EEMGSM) beams, based on the generalized Huygens-Fresnel principle and the second moment theory of Wigner distribution function, the analytical expression of M2 factor of EEMGSM beams propagating in anisotropic turbulence was derived theoretically. Through numerical calculation and analysis, the variations of initial polarization, initial coherence, waist width, wavelength and turbulence structure constant with M2 factor were investigated. The results show that, M2 factor of EEMGSM beam decreases with the increase of order, wavelength and waist width. It decreases with the decrease of initial coherence and turbulence structure constant. Under the same conditions, the beam quality of EEMGSM beams with large initial polarization is less affected by anisotropy than that of EEMGSM beams with small initial polarization. Under the same conditions, the quality factor of EEMGSM beam is smaller than that of scalar elliptical Gaussian-Schell mode (EGSM) beam. EEMGSM beam has the advantage of alleviating the influence of anisotropic turbulence. The study has certain theoretical reference value for the research of free space optical communication.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.7510/jgjs.issn.1001-3806.2019.06.019

所属栏目:激光与光电子技术应用

基金项目:国家自然科学基金资助项目(11374015); 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室开放基金资助项目(SKLST201608)

收稿日期:2018-11-19

修改稿日期:2018-12-06

网络出版日期:--

作者单位    点击查看

束 杰:安徽师范大学 物理与电子信息学院, 芜湖 241002
屈 军:安徽师范大学 物理与电子信息学院, 芜湖 241002

联系人作者:屈军(qujun70@ahnu.edu.cn)

备注:束 杰(1992-), 男, 硕士研究生, 现主要从事激光传输的研究。

【1】SHIRAI T, DOGARIU A, WOLF E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Optics Letters, 2003, 28(8): 610-612.

【2】WU G H, GUO H, YU S, et al. Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(5): 715-717.

【3】GORI F, RAMIREZSANCHEZ V, SANTARSIERO M, et al. On genuine cross-spectral density matrices[J]. Journal of Optics, 2009, A11(8): 85706-85707.

【4】KOROTKOVA O, SAHIN S, SHCHEPAKINA E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America, 2012, A29(10): 2159-2164.

【5】ZHOU Y, YUAN Y Sh, QU J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence[J]. Optics Express, 2016, 24(10): 10682-10693.

【6】MEI Zh R, KOROTKOVA O. Random sources generating ring-shaped beams[J]. Optics Letters, 2013, 38(2): 91-93.

【7】WANG F, LIANG Ch H, YUAN Y Sh, et al. Generalized multi-Gaussian correlated Schell-model beam: From theory to experiment[J]. Optics Express, 2014, 22(19): 23456.

【8】YUAN Y Sh, LIU X L, WANG F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013, 305(3): 57-65.

【9】KOROTKOVA O, SALEM M, WOLF E. The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence[J]. Optics Communications, 2004, 233(4): 225-230.

【10】ROYCHOWDHURY H, PONOMARENKO S, WOLF E. Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere[J]. Journal of Modern Optics, 2005, 52(11): 1611-1618.

【11】KOROTKOVA O. Scintillation index of a stochastic electromagnetic beam propagating in random media[J]. Optics Communications, 2008, 281(9): 2342-2348.

【12】REYNOLDS O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Proceedings of the Royal Society of London, 1883, 35(224/226): 84-99.

【13】KARMAN T V. On the statistical theory of turbulence[J].Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(2): 98-105.

【14】TAYLOR G I. Flow in pipes and between parallel planes[J]. Proceedings of the Royal Society of London, 1937, 159(899): 496-506.

【15】KOLMOGOROV A N. Reviews of topical problems: Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers[J]. Proceedings Mathematical & Physical Sciences, 1991, 434(1890): 9-13.

【16】OBUKHOV A M. Some specific features of atmospheric turbulence[J]. Journal of Geophysical Research, 1962, 67(8): 3011-3014.

【17】WU G H, DAI W, TANG H, et al. Beam wander of random electromagnetic Gaussian-Shell model vortex beams propagating through a Kolmogorov turbulence[J]. Optics Communications, 2015, 336: 55-58.

【18】WU Zh N, XIE J R, YANG Y N. Design and implementation of beam shaping for high power semiconductor lasers[J]. Laser Technology, 2017, 41(3): 416-420(in Chinese).

【19】ZHANG D B, SONG Y H, WANG Q Sh, et al. Error analysis of laser divergence angle measurement[J]. Laser Technology, 2016, 40(6): 926-929(in Chinese).

【20】HAN L Q, WANG Zh B. Fiber coupling efficiency and Strehl ratio for space optical communication based on adaptive optics correction[J]. Infrared and Laser Engineering, 2013, 42(1): 125-129(in Chinese).

【21】KANG X P, LU B D. Applicability of kurtosis parameter characterizing the degree of sharpness of beam intensity distribution[J]. Laser Technology, 2005, 29(4): 426-428(in Chinese).

【22】ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagation through turbulent atmosphere[J]. Laser Technology, 2016, 40(5): 750-755(in Chinese).

【23】MEI Zh R, MAO Y H, WANG Y Y. Electromagnetic multi-Gaussian Schell-model vortex light sources and their radiation field properties[J]. Optics Express, 2018, 26(17): 21992-22000.

【24】ZHU Sh J, CAI Y J, KOROTKOVA O. Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam[J]. Optics Express, 2010, 18(12): 12587-12598.

【25】WANG F, KOROTKOVA O. Random optical beam propagation in anisotropic turbulence along horizontal links[J]. Optics Express, 2016, 24(21): 24422-24434.

【26】SHIRAI T, DOGARIU A, WOLF E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America, 2003, A20(6):1094-1102.

引用该论文

SHU Jie,QU Jun. M2 factor of electromagnetic elliptic multi-Gaussian-Schell mode beam in anisotropic turbulence[J]. Laser Technology, 2019, 43(6): 834-840

束 杰,屈 军. EEMGSM光束在各向异性湍流中的光束质量因子研究[J]. 激光技术, 2019, 43(6): 834-840

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF